Bayer, Justin und Osendorfer, Christian und van der Smagt, Patrick (2011) Learning Sequence Neighbourhood Metrics. NIPS 2011, Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity , TUM.
PDF
232kB |
Kurzfassung
Storing short descriptors of sequential data has several benefits. First, they typically require much less memory and thus make processing of large data sets much more efficient. Second, if the descriptors are formed as vectors, e.g. x 2 Rn, numerous algorithms tailored towards static data can be applied. Instead of applying static data algorithms to dynamic data, we propose to learn a mapping from sequential data to static data first. This can be done by combining recurrent neural networks (RNNs), a pooling operation and any differentiable objective function for static data. In this work, we present how neigbourhood components analysis (NCA) (Goldberger et al. 2004) can be used to learn meaningful representations which lead to excellent classification results and visualizations on a speech dataset.
elib-URL des Eintrags: | https://elib.dlr.de/74147/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Paper) | ||||||||||||||||
Titel: | Learning Sequence Neighbourhood Metrics | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2011 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Learning Sequence | ||||||||||||||||
Veranstaltungstitel: | NIPS 2011, Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity | ||||||||||||||||
Veranstaltungsort: | TUM | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
HGF - Forschungsbereich: | Verkehr und Weltraum (alt) | ||||||||||||||||
HGF - Programm: | Weltraum (alt) | ||||||||||||||||
HGF - Programmthema: | W SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Weltraum | ||||||||||||||||
DLR - Forschungsgebiet: | W SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | W - RMC - Kognitive Intelligenz und Autonomie (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (bis 2012) > Robotersysteme | ||||||||||||||||
Hinterlegt von: | Beinhofer, Gabriele | ||||||||||||||||
Hinterlegt am: | 20 Jan 2012 11:34 | ||||||||||||||||
Letzte Änderung: | 31 Jul 2019 19:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags