Groh, Ingmar und Sand, Stephan (2011) Optimised Complexity Reduction for Maximum Likelihood Position Estimation in Spread Spectrum Navigation Receivers. IET Radar, Sonar & Navigation, 5 (9), Seiten 911-923. Institution of Engineering and Technology (IET). doi: 10.1049/iet-rsn.2011.0041. ISSN 1751-8784.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://link.aip.org/link/?RSN/5/911/1
Kurzfassung
In urban environments, spread spectrum radio navigation is subject to multipath propagation causing multipath errors of tens of metres. Low-complexity high-resolution channel delay estimation is crucial for position estimation in the receivers to mitigate the multipath errors. The main drawback of maximum likelihood (ML) channel delay estimation is the high computational complexity. Thus, recent publications present methods to decrease its computational complexity. These contributions assess the complexity reduction by means of signal subspace energy errors (SSEEs). This assessment of the complexity reduction is incomplete, as the relevant metric, that is, the relationship between complexity reduction and degrading position accuracy in terms of increasing root mean square error (RMSE) lacks. The authors main contribution is the derivation and analysis of this relation. The larger RMSE for complexity-reduced ML estimation algorithms compared to the implementation without complexity reduction consists of an increased noise variance and a non-zero bias. Thus, this contribution associates the SSEE and the RMSE for complexity-reduced ML estimators. Computer simulations confirm the revealed analytical relationships. Furthermore, the authors approach yields a novel method to minimise the increased noise variance of complexity-reduced ML estimation. Thus, the authors algorithms yield a lower RMSE.
elib-URL des Eintrags: | https://elib.dlr.de/71165/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Optimised Complexity Reduction for Maximum Likelihood Position Estimation in Spread Spectrum Navigation Receivers | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Dezember 2011 | ||||||||||||
Erschienen in: | IET Radar, Sonar & Navigation | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 5 | ||||||||||||
DOI: | 10.1049/iet-rsn.2011.0041 | ||||||||||||
Seitenbereich: | Seiten 911-923 | ||||||||||||
Verlag: | Institution of Engineering and Technology (IET) | ||||||||||||
ISSN: | 1751-8784 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | optimised complexity reduction, maximum likelihood position estimation, spread spectrum navigation receivers, multipath propagation, low-complexity high-resolution channel delay estimation, position estimation, ML, signal subspace energy errors, root mean square error, RMSE, SSEE, computer simulations | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben GNSS2/Neue Dienste und Produkte (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||
Hinterlegt von: | Sand, Dr Stephan | ||||||||||||
Hinterlegt am: | 18 Jan 2012 11:44 | ||||||||||||
Letzte Änderung: | 19 Nov 2021 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags