Zhu, Xiao Xiang und Bamler, Richard (2012) Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR. IEEE Transactions on Geoscience and Remote Sensing, 50 (1), Seiten 1-12. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2011.2160183. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5966335
Kurzfassung
We address the problem of resolving two closely spaced complex-valued points from N irregular Fourier do- main samples. Although this is a generic super-resolution (SR) problem, our target application is SAR tomography (TomoSAR), where typically the number of acquisitions is N = 10 - 100 and SNR = 0-10 dB. As the TomoSAR algorithm, we introduce "Scale-down by LI norm Minimization, Model selection, and Estimation Reconstruction" (SL1MMER), which is a spectral estimation algorithm based on compressive sensing, model order selection, and final maximum likelihood parameter estimation. We investigate the limits of SLIMMER concerning the following questions. How accurately can the positions of two closely spaced scatterers be estimated? What is the closest distance of two scat- terers such that they can be separated with a detection rate of 50% by assuming a uniformly distributed phase difference? How many acquisitions N are required for a robust estimation (i.e., for separating two scatterers spaced by one Rayleigh resolution unit with a probability of 90%)? For all of these questions, we provide numerical results, simulations, and analytical approxima- tions. Although we take TomoSAR as the preferred application, the SLIMMER algorithm and our results on SR are generally applicable to sparse spectral estimation, including SR SAR focus- ing of point-like objects. Our results are approximately applicable to nonlinear least-squares estimation, and hence, although it is derived experimentally, they can be considered as a fundamental bound for SR of spectral estimators. We show that SR factors are in the range of 1.5-25 for the aforementioned parameter ranges of N and SNR.
elib-URL des Eintrags: | https://elib.dlr.de/70683/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Januar 2012 | ||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 50 | ||||||||||||
DOI: | 10.1109/TGRS.2011.2160183 | ||||||||||||
Seitenbereich: | Seiten 1-12 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 0196-2892 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | super-resolution, SL1MMER, SAR, SAR Tomography | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||
Hinterlegt am: | 07 Sep 2011 14:27 | ||||||||||||
Letzte Änderung: | 17 Okt 2024 15:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags