DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

Butchart, Neal and Cionni, I. and Eyring, V. and Shepherdyring, T.G. and Waugh, D.W. and Akiyoshi, H. and Austin, J. and Brühl, C. and Chipperfield, M. and Cordero, E. and Dameris, M. and Deckert, R. and Dhomse, S. and Frith, S. and Garcia, R.R. and Gettelman, A. and Giorgetta, A. and Kinnison, D. E. and Li, F. and Mancini, E. and McLandress, C. and Pawson, S. and Pitari, G. and Plummer, D.A. and Rozanov, E. and Sassi, F. and Scinocca, J.F. and Shibata, K. and Steil, B. and Tian , W. (2010) Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes. Journal of Climate, 23, pp. 5349-5374. American Meteorological Society. DOI: 10.1175/2010JCLI3404.1

Full text not available from this repository.

Official URL: http://journals.ametsoc.org/doi/full/10.1175/2010JCLI3404.1


The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Item URL in elib:https://elib.dlr.de/68087/
Document Type:Article
Title:Chemistry–Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Butchart, Neal Met Office Hadley Centre, Exeter, UKUNSPECIFIED
Shepherdyring, T.G.Univ. of Toronto, CNDUNSPECIFIED
Waugh, D.W.Johns Hopkins Univ., Baltimore, MD, USAUNSPECIFIED
Akiyoshi, H.Univ Toronto, CNDUNSPECIFIED
Austin, J.Geophysical Fluid Dynamics Lab., Princeton, NJ, USAUNSPECIFIED
Chipperfield, M.Univ. of Leeds, UKUNSPECIFIED
Cordero, E.San Jose State Univ., San Jose, CA, USAUNSPECIFIED
Dhomse, S.Univ. of Leeds, UKUNSPECIFIED
Frith, S.Science Systems and Applications, Inc., Lanham, MD, USAUNSPECIFIED
Gettelman, A.NCAR, Boulder, CO, USAUNSPECIFIED
Giorgetta, A.MPIM, HamburgUNSPECIFIED
Kinnison, D. E. NCAR, Boulder, CO, USAUNSPECIFIED
Li, F. Univ. of Maryland, Baltimore, MD, USAUNSPECIFIED
Mancini, E.Univ. L’Aquila, L’Aquila, IUNSPECIFIED
McLandress, C.Univ. of Toronto, CNDUNSPECIFIED
Pitari, G.Univ. L’Aquila, L’Aquila, IUNSPECIFIED
Plummer, D.A.Environment Canada, Toronto, CNDUNSPECIFIED
Rozanov, E.Physical–Meteorological Observ., Davos, CHUNSPECIFIED
Sassi, F.Naval Research Laboratory, Washington, D.C, USAUNSPECIFIED
Scinocca, J.F.Univ. of Victoria, Victoria, BC, CNDUNSPECIFIED
Shibata, K.Meteorological Research Inst., Tsukuba, JUNSPECIFIED
Tian , W.Univ. of Leeds, UKUNSPECIFIED
Journal or Publication Title:Journal of Climate
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In ISI Web of Science:Yes
DOI :10.1175/2010JCLI3404.1
Page Range:pp. 5349-5374
Publisher:American Meteorological Society
Keywords:Chemistry, atmospheric, Climate models, Stratosphere, Greenhouse gases, Ozone
HGF - Research field:Aeronautics, Space and Transport (old)
HGF - Program:Space (old)
HGF - Program Themes:W EO - Erdbeobachtung
DLR - Research area:Space
DLR - Program:W EO - Erdbeobachtung
DLR - Research theme (Project):W - Vorhaben Atmosphären- und Klimaforschung (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Atmospheric Physics > Atmospheric Dynamics
Deposited By: Freund, Jana
Deposited On:05 Jan 2011 14:12
Last Modified:08 Mar 2018 18:42

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.