Conrad, Christopher and Fritsch, Sebastian and Zeidler, Julian and Rücker, Gerd and Dech, Stefan (2010) Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data. Remote Sensing, 2 (4), pp. 1035-1056. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs2041035.
PDF
1MB |
Official URL: http://www.mdpi.com/2072-4292/2/4/1035/
Abstract
Abstract: The overarching goal of this research was to explore accurate methods of mapping irrigated crops, where digital cadastre information is unavailable: (a) Boundary separation by object-oriented image segmentation using very high spatial resolution (2.5âÂÂ5 m) data was followed by (b) identification of crops and crop rotations by means of phenology, tasselled cap, and rule-based classification using high resolution (15âÂÂ30 m) bi-temporal data. The extensive irrigated cotton production system of the Khorezm province in Uzbekistan, Central Asia, was selected as a study region. Image segmentation was carried out on pan-sharpened SPOT data. Varying combinations of segmentation parameters (shape, compactness, and color) were tested for optimized boundary separation. The resulting geometry was validated against polygons digitized from the data and cadastre maps, analysing similarity (size, shape) and congruence. The parameters shape and compactness were decisive for segmentation accuracy. Differences between crop phenologies were analyzed at field level using bi-temporal ASTER data. A rule set based on the tasselled cap indices greenness and brightness allowed for classifying crop rotations of cotton, winter-wheat and rice, resulting in an overall accuracy of 80 %. The proposed field-based crop classification method can be an important tool for use in water demand estimations, crop yield simulations, or economic models in agricultural systems similar to Khorezm.
Item URL in elib: | https://elib.dlr.de/67174/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 8 April 2010 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 2 | ||||||||||||||||||||||||
DOI: | 10.3390/rs2041035 | ||||||||||||||||||||||||
Page Range: | pp. 1035-1056 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | object-based classification; segmentation; tasselled cap; Uzbekistan; irrigated agriculture; multi-sensor | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport (old) | ||||||||||||||||||||||||
HGF - Program: | Space (old) | ||||||||||||||||||||||||
HGF - Program Themes: | W EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Research area: | Space | ||||||||||||||||||||||||
DLR - Program: | W EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Research theme (Project): | W - Vorhaben Geowissenschaftl. Fernerkundungs- und GIS-Verfahren (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Land Surface German Remote Sensing Data Center | ||||||||||||||||||||||||
Deposited By: | Zeidler, Julian | ||||||||||||||||||||||||
Deposited On: | 03 Feb 2011 21:01 | ||||||||||||||||||||||||
Last Modified: | 14 Dec 2019 04:25 |
Repository Staff Only: item control page