Conrad, Christopher und Fritsch, Sebastian und Zeidler, Julian und Rücker, Gerd und Dech, Stefan (2010) Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data. Remote Sensing, 2 (4), Seiten 1035-1056. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs2041035.
PDF
1MB |
Offizielle URL: http://www.mdpi.com/2072-4292/2/4/1035/
Kurzfassung
Abstract: The overarching goal of this research was to explore accurate methods of mapping irrigated crops, where digital cadastre information is unavailable: (a) Boundary separation by object-oriented image segmentation using very high spatial resolution (2.5âÂÂ5 m) data was followed by (b) identification of crops and crop rotations by means of phenology, tasselled cap, and rule-based classification using high resolution (15âÂÂ30 m) bi-temporal data. The extensive irrigated cotton production system of the Khorezm province in Uzbekistan, Central Asia, was selected as a study region. Image segmentation was carried out on pan-sharpened SPOT data. Varying combinations of segmentation parameters (shape, compactness, and color) were tested for optimized boundary separation. The resulting geometry was validated against polygons digitized from the data and cadastre maps, analysing similarity (size, shape) and congruence. The parameters shape and compactness were decisive for segmentation accuracy. Differences between crop phenologies were analyzed at field level using bi-temporal ASTER data. A rule set based on the tasselled cap indices greenness and brightness allowed for classifying crop rotations of cotton, winter-wheat and rice, resulting in an overall accuracy of 80 %. The proposed field-based crop classification method can be an important tool for use in water demand estimations, crop yield simulations, or economic models in agricultural systems similar to Khorezm.
elib-URL des Eintrags: | https://elib.dlr.de/67174/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 8 April 2010 | ||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 2 | ||||||||||||||||||||||||
DOI: | 10.3390/rs2041035 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1035-1056 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | object-based classification; segmentation; tasselled cap; Uzbekistan; irrigated agriculture; multi-sensor | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Verkehr und Weltraum (alt) | ||||||||||||||||||||||||
HGF - Programm: | Weltraum (alt) | ||||||||||||||||||||||||
HGF - Programmthema: | W EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Weltraum | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | W EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | W - Vorhaben Geowissenschaftl. Fernerkundungs- und GIS-Verfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Landoberfläche Deutsches Fernerkundungsdatenzentrum | ||||||||||||||||||||||||
Hinterlegt von: | Zeidler, Julian | ||||||||||||||||||||||||
Hinterlegt am: | 03 Feb 2011 21:01 | ||||||||||||||||||||||||
Letzte Änderung: | 14 Dez 2019 04:25 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags