elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Effect of Injector Wall Heat Flux on Cryogenic Injection

Banuti, Daniel und Hannemann, Klaus (2010) Effect of Injector Wall Heat Flux on Cryogenic Injection. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010-07-25 - 2010-07-28, Nashville, USA. ISBN 978-1-60086-747-7.

Dies ist die aktuellste Version dieses Eintrags.

[img]
Vorschau
PDF
1MB

Offizielle URL: http://www.aiaa.org

Kurzfassung

This paper reports on numerical investigation and discussion of a cryogenic injection test case. This is a first step towards a numerical model for high pressure liquid rocket engine injection. Experiments with nitrogen injection at supercritical pressures are an accepted way of studying flow phenomena relevant for high pressure liquid rocket engines without introducing the complexities of mixing and combustion. CFD simulations of these cryogenic injection cases are found to typically agree on predicting a region of constant high density, extending some 10 injector diameters downstream into the chamber. This is in agreement with the traditional interpretation of liquid injection where instabilities on the phase boundary grow until the jet disintegrates. However, many experiments do not show this behavior: exceeding the critical pressure of the injected fluid, phase interfaces seize to exist, the jet tends to behave more like a dense gas jet with a rapid drop off of density starting at the injector exit. It is thus unclear whether the concept of a liquid core length is still true for thermodynamic states at temperatures near the critical point and supercritical pressures. To study this, experimental and numerical boundary conditions have been analyzed. Computations have been carried out using the DLR TAU code extended by a treatment for real gas thermodynamics. It has been found that the absence of a dense core, as found in experiments, can be reproduced numerically if numerical boundary conditions are chosen appropriately: taking into account heat transfer inside the injector leads to a preheating of the cryogenic stream and the development of a distinct radial density profile. This preheated jet then shows the more realistic immediate reduction of density instead of a dense core.

elib-URL des Eintrags:https://elib.dlr.de/64774/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:Effect of Injector Wall Heat Flux on Cryogenic Injection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Banuti, Danieldaniel.banuti (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hannemann, Klausklaus.hannemann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2010
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-9
Name der Reihe:AIAA Meeting Papers on Disc, DVD-ROM
ISBN:978-1-60086-747-7
Status:veröffentlicht
Stichwörter:propulsion, cryogenic, CFD, injection
Veranstaltungstitel:46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
Veranstaltungsort:Nashville, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 Juli 2010
Veranstaltungsende:28 Juli 2010
Veranstalter :AIAA
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W RP - Raumtransport
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):W - Leitprojekt - Propulsion 2010 / CFD und Simulation (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge
Hinterlegt von: Banuti, Daniel
Hinterlegt am:17 Aug 2010 15:25
Letzte Änderung:24 Apr 2024 19:30

Verfügbare Versionen dieses Eintrags

  • Effect of Injector Wall Heat Flux on Cryogenic Injection. (deposited 17 Aug 2010 15:25) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.