DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

VELOX – A Demonstration Facilility for Lunar Oxygen Extraction in a Laboratory Environment

Braukhane, A. und Kreutz, M. und Ksenik, E. und Richter, L. und Romberg, O. (2010) VELOX – A Demonstration Facilility for Lunar Oxygen Extraction in a Laboratory Environment. In: GLUC Proceedings. Global Lunar Concerence (GLUC) 2010, 30. Mai - 03. Juni 2010, Peking, China.

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


The ultimate goal of a permanent human presence on the Moon is discussed intensively within the global lunar community. Obviously, such an effort poses stringent demands not only on the technology but also on logistics, especially considering the important aspects of masses and volume for materials and replenishments of consumables. On-site propellant production (i.e. liquid oxygen) is one of the main needs and would lead to more efficient return-to-Earth or further exploration missions. Additionally, the supply of breathable air and water for the survival of the crew on the lunar surface is also a major aspect. Thus, large effort is put into the development and research of technologies for in-situ resources utilization (ISRU) to drastically reduce the required supply from Earth and to increase the level of autonomy of a lunar outpost. The major resource on the Moon for such a purpose is regolith, which covers the first meters of the lunar surface and contains about 45% of mineralogically bounded Oxygen in terms of mass. By using adequate processing methods of this material, one could be able to extract valuable minerals and volatiles for further utilization. At DLR Bremen a compact and flexible lab experimenting facility has been developed, built and tested, which shall demonstrate the feasibility of the process by extracting oxygen out of lunar regolith, respectively soil simulants and certain minerals in the laboratory case. For this purpose, important boundary conditions have been investigated such as temperatures during the process, chemical reaction characteristics and material properties for the buildup of the facility, which shall be analyzed within this paper. Since it is one of the most elaborated chemical processes regarding ISRU and has comparably low temperature and energy constraints it has been primarily concentrated on the Hydrogen-reduction process which reduces the iron oxide component of Ilmenite (FeTiO3) within the lunar regolith. Based on the obtained results, a first line-out of a planned superior test set-up and infrastructure with pre- and post-processing units such as feeding and extraction is also presented, as well as an analysis of reaction products with common methods. This paper will present the first results of DLR efforts regarding these topics. Finally, important aspects of the future development of the processes and technologies are discussed with special consideration of lunar applicability and with respect to environmental conditions as well as mass and energy constraints.

Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:VELOX – A Demonstration Facilility for Lunar Oxygen Extraction in a Laboratory Environment
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Datum:Juni 2010
Erschienen in:GLUC Proceedings
Referierte Publikation:Nein
In Open Access:Nein
In ISI Web of Science:Nein
Stichwörter:Moon Oxygen Production In-situ Resource Utilization Hydrogen Reduction Laboratory
Veranstaltungstitel:Global Lunar Concerence (GLUC) 2010
Veranstaltungsort:Peking, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:30. Mai - 03. Juni 2010
Veranstalter :IAF / ILEWG
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EW - Erforschung des Weltraums
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):W - VELOX (alt)
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Systemanalyse Raumsegmente
Hinterlegt von: Braukhane, Andy
Hinterlegt am:23 Jul 2010 10:30
Letzte Änderung:23 Jul 2010 10:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2017 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.