Schmitt, Andreas und Wessel, Birgit und Roth, Achim (2009) Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection. City Models, Roads and Traffic (CMRT), 2009-09-03 - 2009-09-04, Paris (France). ISSN 1682-1777.
|
PDF
1MB |
Kurzfassung
In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients. By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects.
elib-URL des Eintrags: | https://elib.dlr.de/61982/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Paper) | ||||||||||||||||
Titel: | Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | September 2009 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 151-156 | ||||||||||||||||
ISSN: | 1682-1777 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR, Imagery, Structure, Extraction, Change Detection, Method, Urban | ||||||||||||||||
Veranstaltungstitel: | City Models, Roads and Traffic (CMRT) | ||||||||||||||||
Veranstaltungsort: | Paris (France) | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 3 September 2009 | ||||||||||||||||
Veranstaltungsende: | 4 September 2009 | ||||||||||||||||
HGF - Forschungsbereich: | Verkehr und Weltraum (alt) | ||||||||||||||||
HGF - Programm: | Weltraum (alt) | ||||||||||||||||
HGF - Programmthema: | W EO - Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Weltraum | ||||||||||||||||
DLR - Forschungsgebiet: | W EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | W - Vorhaben Anwendungen Erdbeobachtung - HGF-Kooperation EOS (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Umwelt und Sicherheit | ||||||||||||||||
Hinterlegt von: | Schmitt, Andreas | ||||||||||||||||
Hinterlegt am: | 06 Apr 2010 10:45 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 19:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags