elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Analytical Methods for Analysis of Electromagnetic Field Behavior at Edges

Osipov, Andrey (2000) Analytical Methods for Analysis of Electromagnetic Field Behavior at Edges. 3rd URSI Commission B German Section Workshop on Fields and Waves, 2000-11-23 - 2000-11-24, Odenthal-Altenberg, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

This 25-minutes-long presentation has addressed the problem of singular behavior of electromagnetic fields at places of abrupt changes of geometrical or/and material properties of a reflecting boundary. The presentation has been primarily concerned with a wedge configuration (perfectly conducting, impedance, dielectric) and attention has been focused on the field behavior at the edge of the wedge. In a vicinity of the edge, transverse field components are known to exhibit a power singularity with an exponent which is a function of material and geometrical parameters of the configuration. The ability to predict a precise value of the exponent or, more generally, to construct suitable analytical representations for the electromagnetic field components near the edge of a wedge is of great practical and theoretical interest because this canonical configuration is relevant to a wide variety of practical applications, including reduction of radar cross section of scattering objects, transmission of electromagnetic energy via waveguides and microstrip lines, radiation of waves from antenna apertures, radio communication over irregular terrain features etc. The talk has covered both theoretical and practical aspects of the problem. In particular, it started by introducing basic concepts and techniques (edge conditions, Meixner's method) employed for the analysis of the field behavior at edges. Specific examples of edge behavior in various configurations of practical interest have been given. Then the focus has been on a relatively new technique -- method of edge functions (MEF) -- which is based on eigenfuncion solutions of Maxwell's equations, each correctly satisfying the edge conditions and conditions of continuity of the tangential field components across the wedge faces. The talk concluded with a discussion of possible applications of MEF to semi-analytical solution of canonical problems of high-frequency electromagnetic scattering from wedges.

elib-URL des Eintrags:https://elib.dlr.de/5928/
Dokumentart:Konferenzbeitrag (Vortrag)
Zusätzliche Informationen:LIDO-Berichtsjahr=2000
Titel:Analytical Methods for Analysis of Electromagnetic Field Behavior at Edges
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Osipov, AndreyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2000
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:dielectric wedge, edge singularity, electromagnetic diffraction, high-frequency methods, semi-analytic solution
Veranstaltungstitel:3rd URSI Commission B German Section Workshop on Fields and Waves
Veranstaltungsort:Odenthal-Altenberg, Germany
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:23 November 2000
Veranstaltungsende:24 November 2000
Veranstalter :Kommission B des URSI-Landesausschusses in der Bundesrepublik Deutschland
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Starrflügler (alt)
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Starrflüglerforschung
DLR - Teilgebiet (Projekt, Vorhaben):L - Militärische Technologien (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Hinterlegt von: Osipov, Dr. Andrey
Hinterlegt am:03 Feb 2006
Letzte Änderung:24 Apr 2024 18:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.