elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hydrothermal Systems in Small Ocean Planets

Vance, Steve und Harnmeijer, Jelte und Kimura, Jun und Hussmann, Hauke und DeMartin, Brian und Brown, J. Michael (2007) Hydrothermal Systems in Small Ocean Planets. Astrobiology, 7 (6), Seiten 987-1005. Mary Ann Liebert Inc.. doi: 10.1089/ast.2007.0075.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system—for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets—Mars, a number of icy satellites, Pluto, and other trans-neptunian objects—and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10<sup>9</sup> and 10<sup>10</sup> molecules cm<sup>-2</sup> s<sup>-1</sup>.

elib-URL des Eintrags:https://elib.dlr.de/52966/
Dokumentart:Zeitschriftenbeitrag
Titel:Hydrothermal Systems in Small Ocean Planets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Vance, SteveUniversity of Washington, SeattleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Harnmeijer, JelteUniversity of Washington, SeattleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kimura, JunUniversity of TokyoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hussmann, HaukeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DeMartin, BrianBrown University, ProvidenceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Brown, J. MichaelUniversity of Washington, SeattleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2007
Erschienen in:Astrobiology
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Ja
Band:7
DOI:10.1089/ast.2007.0075
Seitenbereich:Seiten 987-1005
Verlag:Mary Ann Liebert Inc.
Status:veröffentlicht
Stichwörter:Icy Satellites, Interior, Ocean Planets, Hydrothermal Systems
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EW - Erforschung des Weltraums
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Vergleichende Planetologie (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung
Hinterlegt von: Hußmann, Dr. Hauke
Hinterlegt am:17 Jan 2008
Letzte Änderung:27 Apr 2009 14:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.