DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Small Geodesy Surface Package for Future Lunar Robotic Missions

Oberst, Jürgen und Schreiber, U. und Müller, J. und Nothnagel, A. und Hugentobler, U. und Michaelis, Harald (2007) A Small Geodesy Surface Package for Future Lunar Robotic Missions. In: AGU Fall Meeting 2007 (#P51B-0487). AGU fall meeting, 2006-12-10 - 2006-12-14, San Francisco (USA).

Dieses Archiv kann nicht den gesamten Text zur Verfügung stellen.


We propose to deploy small (2-3 kg) Lunar geodesy packages on the Moon's surface, consisting of an optical Laser receiver, a small retroreflector, as well as a radio beacon. The optical receiver will maintain Earth pointing through the Lunar libration cycles and record arrival times of Laser shots from Earth. Judging from the photon budget for a 50 mJ pulse Laser, most of the existing more than 30 ILRS (International Laser Ranging Service) stations could participate in the experiment and produce large numbers of range measurements at high accuracy and unbiased temporal coverage. The light-weight 0.5 sqm retroreflector will be adequate for direct ranging measurements using the classic Lunar Laser Ranging stations. The simultaneous acquisition of data from the Laser receiver on the Moon and reflected Laser shots on Earth will allow us to calibrate the onboard clock. A small radio source shall be deployed within the package, for tracking by VLBI stations. The experience from the past 38 years of Apollo Lunar Laser Ranging suggests that there is enormous science potential in ranging data to further our understanding of the Moon's internal structure, the dynamics of the Earth-Moon system and fundamental physics. For example, from the Moon's tidal response, inferences can be made on a solid or liquid Lunar core and its size and oblateness. In addition, parameters from gravitational physics, e.g., the time-stability of the gravitational "constant", or the strong equivalence principle (Nordtvedt-effect) could be modeled with vastly improved accuracy. While the position of the Laser receiver will define an important anchor point in the lunar-fixed coordinate system, the radio transmitter will firmly tie the dynamical reference frame of the Lunar orbit into the quasi-inertial kinematic reference frame of Quasar coordinates for insights into the Moon's orbital behavior to as yet unknown frontiers.

Dokumentart:Konferenzbeitrag (Poster)
Titel:A Small Geodesy Surface Package for Future Lunar Robotic Missions
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Schreiber, U.Technical University Munich and Geodetic Observatory Wettzell, GermanyNICHT SPEZIFIZIERT
Müller, J.Leibniz University of Hannover, Institute of Geodesy, GermanyNICHT SPEZIFIZIERT
Nothnagel, A.University of Bonn, Institute of Geodesy and Geoinformation, GermanyNICHT SPEZIFIZIERT
Hugentobler, U.Technical University Munich and Geodetic Observatory Wettzell, GermanyNICHT SPEZIFIZIERT
Datum:Dezember 2007
Erschienen in:AGU Fall Meeting 2007
Referierte Publikation:Nein
In Open Access:Nein
In ISI Web of Science:Nein
Stichwörter:Interiors, Orbital and rotational dynamics, Moon, Instruments and techniques
Veranstaltungstitel:AGU fall meeting
Veranstaltungsort:San Francisco (USA)
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:2006-12-10 - 2006-12-14
Veranstalter :AGU
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EW - Erforschung des Weltraums
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):W - keine Zuordnung (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetengeodäsie
Institut für Planetenforschung
Hinterlegt von: Wählisch, Marita
Hinterlegt am:14 Jan 2008
Letzte Änderung:27 Apr 2009 14:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2017 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.