DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Feature-based identification of urban endmember spectra using hyperspectral HyMap data

Segl, Karl and Bochow, Mathias and Roessner, Sigrid and Kaufmann, Herrmann and Heiden, Uta (2006) Feature-based identification of urban endmember spectra using hyperspectral HyMap data. In: First Workshop of the EARSeL Special Interest Group on Urban Remote Sensing 'Challenges and Solutions'. 1st EARSeL Workshop of the SIG Urban Remote Sensing (Berlin 2006), 2006-03-02 - 2006-03-03, Berlin.

Full text not available from this repository.


Urban areas are among the most dynamic regions on earth, continuously and rapidly changing. For monitoring these changes, remote sensing has proven over the years to be a reliable source. Current airborne hyperspectral systems with spatial resolution of a few meters, combined with very high spectral resolution, facilitate the urban scene analysis by allowing to distinguish small details in the urban environment. This paper presents part of a project aiming to classify man-made objects using hyperspectral images and to investigate the complementarity between hyperspectral and SAR data. The intention is to develop methods that are able to quickly obtain an overview of the current situation and require as little human intervention as possible. This is very important for various applications related to disasters, e.g. emergency cartography, disaster monitoring, damage assessment, mission planning, etc.The paper describes a new method for classifying the main classes in an urban environment using hyperspectral data. The method is based on logistic regression (LR), which is a supervised multi-variate statistical tool that finds an optimal combination of the input channels for distinguishing one class from all the others. LR thus results in detection images per class that can then be combined into a classification image. The LR uses a step-wise method that implicitly performs a channel selection. The method is supervised in the sense that existing digital maps are used for learning. However, the method does not require the laboratory spectra or extensive ground truth. The method is applied on HyMAP data of an urban area in the South of Germany. The results of the proposed approach are compared to classical methods. Furthermore, a sensitivity analysis is presented, which investigates the robustness of the detection of the different classes against various influences and in particular the influence of channel width and pre-processing level. The classification results are better than those obtained by a classical method. The sensitivity analysis shows that the pre-processing level applied to the hyperspectral data does not influence the classification results significantly for this application. Furthermore, reducing the number of channels results in a drop of performance for some classes only when less the number of channels becomes inferior to 40.

Item URL in elib:https://elib.dlr.de/52246/
Document Type:Conference or Workshop Item (Speech, Paper)
Title:Feature-based identification of urban endmember spectra using hyperspectral HyMap data
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Bochow, MathiasGFZ PotsdamUNSPECIFIED
Roessner, SigridGFZ PotsdamUNSPECIFIED
Kaufmann, HerrmannGFZ PotsdamUNSPECIFIED
Heiden, UtaDLR OberpfaffenhofenUNSPECIFIED
Date:March 2006
Journal or Publication Title:First Workshop of the EARSeL Special Interest Group on Urban Remote Sensing 'Challenges and Solutions'
Refereed publication:No
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Keywords:hyperspectral, multi-variate statistical tool, urban
Event Title:1st EARSeL Workshop of the SIG Urban Remote Sensing (Berlin 2006)
Event Location:Berlin
Event Type:international Conference
Event Dates:2006-03-02 - 2006-03-03
Organizer:Humboldt-Universität Berlin
HGF - Research field:Aeronautics, Space and Transport (old)
HGF - Program:Space (old)
HGF - Program Themes:W EO - Erdbeobachtung
DLR - Research area:Space
DLR - Program:W EO - Erdbeobachtung
DLR - Research theme (Project):W - Vorhaben Spektrometrische Verfahren und Konzepte der Fernerkundung (old)
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Environment and Security > Environment and Geoinformation
Deposited By: Heiden, Dr.rer.nat. Uta
Deposited On:17 Dec 2007
Last Modified:27 Apr 2009 14:33

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.