Beiler, Marten und Bauer, Niklas Michael und Baumgartner, Jörg und Braun, Moritz (2025) Analytical and machine learning-based fatigue life prediction of welded joints under multiaxial loading. International Journal of Fatigue, 206 (109459). Elsevier. doi: 10.1016/j.ijfatigue.2025.109459. ISSN 0142-1123.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
9MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0142112325006565?via%3Dihub
Kurzfassung
Evaluating the fatigue life of welded joints under multiaxial loading is a key challenge in structural engineering. This study explores machine learning (ML) methods for predicting fatigue life and compares their performance against the novel super ellipse criterion, which is an analytical approach that aims to improve current design standard methods (e.g., Eurocode 3, IIW). Using a dataset of uniaxial and multiaxial fatigue tests with varying phase angles, ML models—including artificial neural networks and extreme gradient boosting (XGBoost)—are trained on features like stress amplitudes, phase differences, and material properties. Artificial neural networks provide high accuracy, while tree-based models like XGBoost offer better interpretability via model agnostic interpretation using Explainable Artificial Intelligence. Results show ML models can outperform traditional criteria, especially under non-proportional loading, but face limitations near the edges of the training data. This work highlights the potential and challenges of ML in fatigue prediction and highlights their value for enhancing the safety and reliability of welded structures.
| elib-URL des Eintrags: | https://elib.dlr.de/222819/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
| Titel: | Analytical and machine learning-based fatigue life prediction of welded joints under multiaxial loading | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 24 Dezember 2025 | ||||||||||||||||||||
| Erschienen in: | International Journal of Fatigue | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| Band: | 206 | ||||||||||||||||||||
| DOI: | 10.1016/j.ijfatigue.2025.109459 | ||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||
| Verlag: | Elsevier | ||||||||||||||||||||
| Name der Reihe: | ICMFF14 | ||||||||||||||||||||
| ISSN: | 0142-1123 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Fatigue strength assessment, Multiaxial fatigue, Artificial neural network, Extreme gradient boosting, Explainable AI, SHAP analysis | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
| DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||
| Standort: | andere | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Maritime Technologien und Antriebssysteme > Schiffszuverlässigkeit | ||||||||||||||||||||
| Hinterlegt von: | Beiler, Marten | ||||||||||||||||||||
| Hinterlegt am: | 12 Feb 2026 15:13 | ||||||||||||||||||||
| Letzte Änderung: | 13 Feb 2026 13:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags