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A B S T R A C T

Evaluating the fatigue life of welded joints under multiaxial loading is a key challenge in structural engineering. 
This study explores machine learning (ML) methods for predicting fatigue life and compares their performance 
against the novel super ellipse criterion, which is an analytical approach that aims to improve current design 
standard methods (e.g., Eurocode 3, IIW). Using a dataset of uniaxial and multiaxial fatigue tests with varying 
phase angles, ML models—including artificial neural networks and extreme gradient boosting (XGBoost)—are 
trained on features like stress amplitudes, phase differences, and material properties. Artificial neural networks 
provide high accuracy, while tree-based models like XGBoost offer better interpretability via model agnostic 
interpretation using Explainable Artificial Intelligence. Results show ML models can outperform traditional 
criteria, especially under non-proportional loading, but face limitations near the edges of the training data. This 
work highlights the potential and challenges of ML in fatigue prediction and highlights their value for enhancing 
the safety and reliability of welded structures.

1. Introduction

Fatigue life evaluation of welded joints under multiaxial loading 
presents a significant challenge in structural engineering, requiring ac
curate prediction methods to ensure safety and reliability. Herein, 
multiaxial fatigue loading in welded joints refers to the simultaneous 
action of different types of stresses—most commonly, normal stresses 
(σx) acting perpendicular to the weld and shear stresses (τxy) acting 
parallel to it. This combination creates a complex stress state that 
significantly influences fatigue behavior and makes accurate fatigue 
assessment challenging.

Two primary types of multiaxial loading conditions are typically 
considered: proportional and non-proportional loading. In proportional 
loading, the stress components vary over time but maintain a constant 
phase relationship (σx(t)/τxy(t) = const.). As a result, the directions of 
the principal stresses remain fixed, and the loading scenario can often be 
approximated by uniaxial loading applied at an inclined angle to the 
weld [1]. Consequently, traditional assessment methods may still yield 
reasonable predictions in such cases; however, in non-proportional 
loading, the stress components vary independently and are out of 

phase with one another (σx(t)/τxy(t) ∕= const.), have different stress ra
tios (Rσ ∕= Rτ), or have different frequencies (fσ ∕= fτ). This leads to a 
time-dependent rotation of the principal stress directions, introducing 
additional complexity into the fatigue process. Experimental studies 
have shown that such conditions can lead to increased fatigue damage 
[2], and the mechanisms governing fatigue crack initiation [3] and 
growth may differ significantly from those under proportional or uni
axial loading [4], which is addressed in design standards by higher 
safety factors.

To address these complexities, a wide range of multiaxial fatigue 
criteria have been developed and proposed in the literature. These 
criteria generally fall into four broad categories: stress-based interaction 
equations, equivalent stresses, critical plane approaches, and integral 
approaches. Stress-based interaction methods attempt to combine the 
effects of normal and shear stresses using mathematical formulations, 
while critical plane models focus on evaluating stresses and strains on 
specific material planes where fatigue damage is most likely to initiate. 
Integral approaches are based not only on the most critical plane but 
integrate an equivalent stress over all planes.

Despite many years of research on multiaxial fatigue, there is still no 

☆ This article is part of a special issue entitled: ‘ICMFF14’ published in International Journal of Fatigue.
* Corresponding author at: German Aerospace Center (DLR), Institute of Maritime Energy Systems, Geesthacht, Germany.

E-mail address: moritz.braun@dlr.de (M. Braun). 

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier.com/locate/ijfatigue

https://doi.org/10.1016/j.ijfatigue.2025.109459
Received 1 October 2025; Received in revised form 28 November 2025; Accepted 23 December 2025  

International Journal of Fatigue 206 (2026) 109459 

Available online 24 December 2025 
0142-1123/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-0225-275X
https://orcid.org/0000-0002-0225-275X
https://orcid.org/0000-0001-9266-1698
https://orcid.org/0000-0001-9266-1698
mailto:moritz.braun@dlr.de
www.sciencedirect.com/science/journal/01421123
https://www.elsevier.com/locate/ijfatigue
https://doi.org/10.1016/j.ijfatigue.2025.109459
https://doi.org/10.1016/j.ijfatigue.2025.109459
http://creativecommons.org/licenses/by/4.0/


general agreement—neither among design codes or within the research 
community—on a single, universally applicable multiaxial fatigue cri
terion for welded joints. The variability in experimental results, coupled 
with the diverse nature of multiaxial stress states, continues to pose a 
significant challenge in selecting and applying the most appropriate 
fatigue assessment model. As a result, engineers and researchers often 
rely on a combination of empirical data, theoretical frameworks, and 
engineering judgment when evaluating the fatigue performance of 
welded structures subjected to complex multiaxial loading.

ML methods offer a promising alternative to traditional—often either 
empirical or numerical—methods, as ML methods are particularly suc
cessful at capturing and modeling complex data interactions. The po
tential of ML has been demonstrated in numerous studies; nevertheless, 
significant differences exist between ML models. Traditional ML models, 
e.g., based on decision trees, are statistical in nature and focus on the 
identification of patterns within the data. On the other hand, artificial 
neural networks learn to approximate complex relationships in data by 
adjusting weights in a layered structure and by using nonlinear activa
tion functions to capture both simple and complex patterns. Both ap
proaches offer distinct advantages. Artificial neural networks, as purely 
black-box models, often achieve higher accuracy compared to tradi
tional ML methods; however, models that leverage data patterns directly 
tend to be more interpretable, which enables reliable interpretation of 
results and to reveal hidden correlations within the data.

This study compares various ML approaches to a state-of-the-art 
design criterion, i.e., the super ellipse criterion [5], for assessing the 
fatigue life of welded joints. A comprehensive dataset comprising uni
axial fatigue test results under nominal and shear loading, as well as 
multiaxial fatigue test data with varying phase angles, forms the basis of 
the analysis. The ML models are trained to predict fatigue life using a 
diverse set of features derived from stress amplitudes, phase differences, 
and material properties. The super ellipse criterion [5], a novel analyt
ical method, serves as a benchmark for evaluating ML performance.

This approach specifically seeks to analyze data interactions leading 
to the fatigue life predictions, compare the results to state-of-the art 
assessment, and assess the interpretability and effectiveness of these 
methods in providing insights into complex fatigue phenomena. Beyond 
neural networks, the study also employs the ensemble tree-based algo
rithm, Extreme Gradient Boosting (XGBoost), to predict fatigue life 
based on multiaxial fatigue test data from welded joints, with the 
resulting predictions being compared. To facilitate model-agnostic 
interpretation of the XGBoost predictions, the Shapley Additive Expla
nations (SHAP) framework is utilized. This work highlights the advan
tages and limitations of ML models for fatigue life prediction and 
provides insights into their application to enhance the reliability of 
welded structures subjected to multiaxial stresses. In addition, the re
sults of the ML models are interpreted using partial dependence plots by 
assessing the relation between fatigue life a variation of selected input 
variables. This facilitates an assessment of the results based on domain 
knowledge.

2. Multiaxial fatigue of welded joints

Fatigue of welded joints under multiaxial loading is under investi
gation since around the 1960s for proportional loading and since around 
the 1980s for non-proportional loading [6]; however, even if multiaxial 
loading is quite common in cyclically loaded structures, available fa
tigue data is rare. Only around 20 experimental campaigns on welded 
steel joints have been published, which performed fatigue tests under 
non-proportional loading. In these investigation, sometimes only two 
fatigue tests have been performed for identical load scenarios [7]. Thus, 
the data basis is limited.

Nevertheless, various fatigue assessment approaches have been 
applied on the existing data and found introduction into common rules 
and guidelines, such as the IIW-recommendations [8], Eurocode 3 [9], 
DNV [10] or FKM [11]. The majority of guidelines use interaction 

equations for the assessment that takes into account the degree of uti
lization, i.e., the ratio between acting and endurable stresses. Despite the 
general similarities, the details of the approaches vary and lead to high 
differences in the resulting assessment. One example is the effect of non- 
proportionality: Whereas the IIW-recommendation proposes a reduction 
of fatigue strength by a reduction of a so-called comparison value, which 
can be interpreted as a penalty factor, the FKM-guideline provides 
different criteria for proportional and non-proportional loading. The 
Eurocode, however, does not consider this damaging effect, even so it is 
experimentally proven [2]. This shows, that there is still, after 50 years 
of research uncertainties on the influences of multiaxial and especially 
non-proportional stress states.

3. Analytical and machine learning-based fatigue life 
predictions for multiaxial fatigue tests

3.1. Super ellipse criterion

The super ellipse criterion (SEC) [12] is a multiaxial fatigue assess
ment criterion assuming ductile material behavior, i.e., a fatigue life 
reduction under non-proportional compared to proportional loading 
[13]. It has been developed on the basis of the presented database by 
optimization of its parameters and provides both accurate and precise 
predictions for all test programs included, while outperforming 
commonly used criteria from the literature and guidelines. Accordingly, 
it will serve as a benchmark for evaluation of the machine learning 
approaches based on the experimental nominal stresses.

Based on an interaction equation, the SEC assumes a super elliptical 
relationship between the cyclic degrees of utilization of both the stress 
range normal to the weld Δσ⊥ and shear stress range Δτ for a given cycle 
number N under both proportional and non-proportional loading. The 
utilization describes the ratio between the applied stress to the endur
able stress, denoted as the fatigue resistance Δσ⊥R (N) and ΔτR(N), which 
is derived from the corresponding uniaxial S-N curve for a given cycle 
number N. The SEC is presented in the following: 
(

Δσ⊥

Δσ⊥R (N)

)c

+

(
Δτ

ΔτR(N)

)c

≤ 1. (1) 

To predict fatigue life, the SEC is transformed into an equation and 
solved numerically with respect to N. Multiaxial loading is differentiated 
using an exponent of c = 2.15 for proportional and c = 1.26 for non- 
proportional loading. The super elliptical relationships of the utiliza
tions inherent to Equation (1) are shown graphically in Fig. 1 for both 
proportional and non-proportional loading.

Within this publication, the SEC is evaluated based on fatigue 

Fig. 1. Graphical illustration of the super ellipse criterion.
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resistances derived directly from the corresponding experiments under 
uniaxial loading. The choice of the stress concept, i.e. the nominal, 
structural, notch, or effective stress concept, is therefore irrelevant, as 
the stress concentration factors would be applied to both the applied and 
the endurable stress range and thus cancel each other out; however, the 
application of the SEC can also be based on design S-N curves from codes 
or standards for any stress concept by determining the corresponding 
applied stress components within the given stress concept. An evalua
tion based on effective stresses derived by the critical distance and the 
stress averaging approach has shown good results [14].

3.2. Machine learning based methods

Machine learning techniques are data-driven methods that are 
created to yield accurate prediction in requiring tasks. In the context of 
fatigue assessment of welded joints, ML methodologies have shown 
significant promise, as they can process multivariate data swiftly and 
capture complex non-linear interactions among various parameter
s—such as load characteristics, geometrical features, and material 
properties. While ML models excel in computational efficiency and 
predictive accuracy, their successful implementation often requires 
large, high-quality datasets [15] and/or a solid incorporation of domain 
knowledge to evaluate and interpret results [16]. Interpretable models 
are essential, as they must allow experts to validate predictions against 
established mechanical principles. Moreover, the generalizability of ML 
models can be challenged if new data fall outside the feature space of the 
training dataset, leading to potential issues like overfitting and reduced 
reliability, see Barbiero et al. [17]. Consequently, the verification and 
validation of ML predictions become crucial before the deployment for 
fatigue life assessment. Such methods offer an attractive alternative to 
traditional fatigue assessment approaches that often rely on idealiza
tions and simplifications.

There are plenty of studies on the applications of ML-based models to 
assess the fatigue strength of machined or additively manufactured 
components even under multiaxial loading [18]; however, studies on 
welded joints are limited.

Among various machine learning methods, artificial neural networks 
are most widely used for fatigue assessment [19]. Common input fea
tures for fatigue life prediction models include load- and material- 
related parameters, defect characteristics such as size and location, 
and stress concentration factors [20]. Recent approaches, aim to assess 
the fatigue strength of welded joints by including information about the 
weld geometry, c.f., [21–23]. This is, however, only possible if detailed 
information about the weld geometry, e.g., from optical surface scans 
are available. The data for the present study is taken from various 
studies and thus not contain such data. Thus, the assessment is limited to 
loading conditions, phase differences, and material properties, which is 
subsequently presented in more detail.

3.2.1. Artificial neural network
Fatigue assessment under multiaxial loading is one of the most 

challenging fields in structural engineering due to the complex in
teractions between stress and strain across different directions. Tradi
tional deterministic models, such as critical plane or energy-based 
approaches, rely on simplified assumptions and material-specific 
empirical data. These methods often lack the flexibility needed to cap
ture nonlinear effects and variability in real-world loading conditions.

Artificial neural networks (ANNs) provide a purely data-driven 
alternative by learning direct mappings between input features and 
fatigue-related outputs without presupposing functional forms. ANNs 
consist of input, hidden, and output layers where interconnected neu
rons apply nonlinear activation functions, enabling the network to 
capture complex relationships in experimental datasets. Their flexibility 
allows them to process diverse mechanical and loading parameters 
simultaneously, making them suitable for multiaxial fatigue applica
tions [24].

Applications of ANNs in this context include fatigue life prediction 
and the estimation of missing material parameters essential for multi
axial criteria. For instance, ANNs have been used to predict fatigue life 
directly from experimental datasets under complex load paths, demon
strating improved accuracy compared with traditional empirical 
models. They have also been applied to estimate fatigue strengths (e.g., 
axial and torsional fatigue limits) when direct experimental data are 
unavailable, thereby enabling the application of multiaxial fatigue 
criteria [25]. In comparative studies, neural network models achieved 
prediction quality on par with or better than conventional regression 
and other machine learning techniques, although dataset size remains a 
critical factor in their performance [24,25].

3.2.2. Extreme gradient boosting
Another data-driven alternative to traditional methods is Extreme 

Gradient Boosting (XGBoost), which is an ensemble machine learning 
method that builds predictive models from multiple sequentially opti
mized regression trees. Unlike conventional regression, it excels at 
handling nonlinear relationships, variable interactions, and heteroge
neous datasets, making it suitable for fatigue problems where stress 
states, material properties, and multiaxial loading histories interact in 
complex ways [25]. The method incorporates both boosting and regu
larization, which reduces overfitting and improves generalization even 
on relatively small experimental fatigue datasets.

The feature-importance functionality of XGBoost and the possibility 
to link it to model agnostic interpretation tools such as SHAP also 
allowed identification of the most influential mechanical and fatigue 
properties for parameter estimation, thereby enhancing interpretability 
of the predictions.

In multiaxial fatigue applications, XGBoost has rarely been used for 
fatigue life estimation, see, e.g., Zhang et al. [24]; however, it is more 
frequently used for fatigue assessment under uniaxial loading 
[21,26–30]. This is, however, not surprising given the few studies on 
fatigue life estimation under multiaxial loading in general.

4. Database on multiaxial fatigue tests of welded joints

The database consists of fatigue tests of welded joints under constant 
and variable amplitude pure normal stress, pure shear stress, propor
tional, and out-of-phase loading while showing ductile material 
behavior. All stresses are nominal stresses. To each multiaxial fatigue 
test there are corresponding fatigue test series under pure normal and 
shear stress with sufficient individual points to derive meaningful S-N 
curves. Other types of non-proportionality as well as stresses parallel to 
the weld are not considered due to the very limited number of tests in the 
literature. Runouts are excluded within the prediction of multiaxial fa
tigue life. Failure refers to through-thickness cracking or fracture. 
Table 1 and Fig. 2 provide a broad overview of each multiaxial fatigue 
test program and the corresponding characteristics. A test program is 
defined as all fatigue tests with equal uniaxial fatigue resistance.

The uniaxial reference stress-life (S-N) curves required for multiaxial 
fatigue assessment are derived from experiments, including runouts, 
using the maximum likelihood method by optimization in the direction 
of the fatigue life, while clamping failure has been interpreted as runout 
[13]. Knee points could be determined only for some tests sets based on 
aluminum and magnesium. For the remaining test sets and in accor
dance with the IIW recommendations [8], a knee point of 107 has been 
assumed for normal stresses and a knee point of 108 for shear stresses, 
both curves have a slope after the knee point of m = 22. Variable 
amplitude loading always refers to Gaussian distributions and is trans
formed to constant amplitude equivalents based on the S-N curve under 
constant amplitude loading according to the Palmgren-Miner rule as 
stated within the IIW recommendations [8]: 
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Δσeq =
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∑

(nj • Δσml
j )

∑
ni +

∑
nj

mk

√

(1) 

while m denotes the slope of the S-N curve, n the number of cycles for 
each load spectrum block, and Dspec the specific Miner sum with Dspec =

0.5 under assumption of no high fluctuations of the mean stresses. The 
indices i and k refer to the values above the knee point, the indices j and l 
to those below the knee point of the S-N curve for Δσeq ≥ Δσknee or vice 
versa for Δσeq < Δσknee.

5. Results of analytical and machine learning-based fatigue 
assessments of multiaxial fatigue tests of welded joints

5.1. Super ellipse criterion

The relationship between the utilizations of Δσ⊥ and Δτ is close to an 
elliptical relationship under proportional loading. The lower exponents 
under non-proportional loading reflect a less curvy correlation corre
sponding to a higher penalty for more similar utilizations of both stress 
components. This can be interpreted as a fatigue life reduction factor 
which depends on the ratio between both stress components. As opposed 
to methods with a constant penalty factor [8,10], the utilization auto
matically becomes 1 if the loading is uniaxial. Accordingly, no differ
entiation as to whether both stress components are significant enough to 
justify the penalty has to be made as this is implicitly and continuously 

considered. Based on the presented database, these relationships proved 
to describe the utilizations derived from the experiments under both 
proportional and non-proportional very well [13], even though the 
available number of fatigue tests with one dominant stress component is 
very limited. An extension by the stress component parallel to the weld 
is recommended with the same exponent, resulting in a super ellipsoid 
criteria, but validated yet only for proportional loading [5]. The pre
dicted fatigue life over the true number of cycles from the multiaxial 
fatigue tests is shown in Fig. 3.

5.2. Artificial neural network

5.2.1. Prediction results
Artificial neural networks are trained on the basis of the presented 

database using k-fold cross-validation (CV) by differentiating between 
test programs to prevent overfitting. The implementation is based on the 
open source python library PyTorch (version 2.2). Program-wise cross 
validation is relevant as each test program is based on the same fatigue 
resistance and hence the same input variables for the ANN. Accordingly, 
for the fatigue life prediction of each of the 14 test programs, a neural 
network is trained based on the fatigue data of all the other test pro
grams [13]. Random cross-validation without differentiation between 
test programs and varying ratios of training and test data resulted in a 
very similar prediction quality. To avoid any effect of variable amplitude 
loading, only constant amplitude loading is used for training.

The input parameters consist of the applied normal stress range Δσ⊥, 

Table 1 
Multiaxial fatigue database for welded joints with ductile material behavior (T-T: Tube-Tube, T-F: Tube-Flange, aw: as welded, sr: stress relieved, gr: ground flush, P: 
proportional, OOP: out-of-phase, *specimens from Razmjoo under pure torsion loading partially failed in the weld throat) [13].

# Primary author(s) Specimen Material Thickness in 
mm

Weld 
condition

Amplitude R Phase shift 
in ◦

Failure 
location

Number P/ 
OOP

01 Eibl [31] T-T Steel (St 35) 2 aw constant − 1 90 Root 18/8
02 Exel [32]/ 

Bolchoun [33]
T-T Magnesium (AZ31) 1.5 aw constant/ 

variable
− 1 45, 90/45 Root 18/19

03 Exel [32]/ 
Bolchoun [33]

T-T Magnesium (AZ61) 1.5 aw constant/ 
variable

− 1 45, 90/45 Root 17/22

04 Bertini [34], 
Frendo [35]

T-F Steel (S355JR) 10 aw constant − 1 90 Root 10//9

05 Bertini [34], 
Frendo [35]

T-F Steel (S355JR) 10 aw constant 0 90 Root 11/8

06 Razmjoo [36] T-F Steel (BS 4360 Grade 
50E)

3.2 aw constant 0 90 Toe* 7/7

07 Sonsino [37]/ 
Sonsino [38]

T-F Steel (StE 460) 10 sr constant/ 
variable

− 1 90 Toe 15/17

08 Sonsino [37] T-T Steel (StE 460) 6 sr + gf constant − 1 90 Toe 9/9
09 Störzel [39] T-T Steel (S235 G2T) 1 aw constant − 1 45, 90 Root 21/24
10 Wiebesiek [40] T-T Aluminum 

(AlMg3,5Mn)
1.5 aw constant, 

variable
− 1 45, 90 Root 27/31

11 Wiebesiek [40] T-T Aluminum 
(AlSi1MgMn T6)

1.5 aw constant, 
variable

− 1 45, 90 Root 23/19

12 Winther [41] T-T Steel (S355J2H) 3.1 aw constant − 1 22.5, 45, 
67.5, 90

Toe 5/25

13 Witt [42] T-F Steel (StE 460) 8.0 sr constant, 
variable

− 1 90 Toe 16/14

14 Witt [42] T-F Steel (StE 460) 8.0 sr constant, 
variable

0 90 Toe 13/15

Fig. 2. Specimens from the database [13].
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the shear stress range Δτ, the phase shift, as well as the parameters of the 
fatigue resistance S-N curves under uniaxial loading Δσ⊥R (N) and 
ΔτR(N), i.e., the stress and cycle number at the knee point as well as the 
slopes before and after the knee point, neglecting the slope after the knee 
point for shear stress due to high correlations with the slope for normal 
stress. All input and output variables are transformed to logarithmic 
values to facilitate training by realizing similar magnitudes.

The ANN are constructed based on two hidden layers with 8 nodes 
each and a ReLU activation function, see Fig. 4. Training is performed 
using backpropagation while applying batch normalization to scale the 
inputs of all layers to similar means and variances. The issue of local 
minima is addressed using mini-batches (10 samples per batch), mo
mentum (factor of 0.5), and multiple random weight initializations. 
Furthermore, as dropout did not enhance the training process, only 
regularization (factor of 0.5) is applied to avoid overfitting. Detailed 
information on the hyperparameter optimization are given in Table 2. 
The prediction results are shown in Fig. 5 where the predicted number of 
cycles from the ANN is plotted versus the true number of cycles from the 
fatigue tests.

5.2.2. Dependence plots
The results and behavior of the neural networks can be interpreted 

via partial dependence plots (PDP). Partial dependence plots are created 
by calculating the mean fatigue life over a variation of selected input 

variables within the test data while keeping all remaining variables 
constant. Since the variables relating to the uniaxial fatigue resistance 
are derived from experiments, load related variables such as the applied 
normal and shear stress are varied assuming a phase shift of 0◦, 45◦, and 
90◦. Fig. 6 shows an averaged partial dependence plot over all neural 
networks on a scalar and logarithmic scale.

The ANN learned a curved relationship between normal and shear 
stress for a given cycle number. Since the logarithmic applied stresses 
are used as input to the ANN, the logarithmic plot on the left directly 
shows the learned behavior of the ANN; however, a transformation to 
linear values allows a better interpretability. For areas with a dominant 
stress component, the presented relationship is not statistically sup
ported as there is no corresponding data within the database. Also, high 
stress levels are based only on very few test programs with similar 
normal to shear stress ratios, while the lower and medium stress levels 
are based on various fatigue test programs with varying normal to shear 
stress ratios. Considering the statistically sound areas under multiaxial 
loading as well as uniaxial loading, a super elliptical relationship can be 
derived on both a logarithmic and a linear scale.

In the partial dependence plots, fatigue life increases with increasing 
stress in certain regions due to missing data in areas dominated by one 
stress component, making those regions unrepresentative. Both plots 
clearly show a significant reduction of endurable stresses, which is 
equivalent to a reduction in fatigue life, under out-of-phase loading 
compared to proportional loading. The fatigue life reduction seems to 
increase with a higher phase shift, as for most stress levels, a 45◦ phase 
shift reduces the endurable stresses by half as much as with a 90◦ phase 
shift. Moreover, the effect of phase shifts declines when one stress 
component becomes comparably small as the curvature under out-of- 
phase loading is less pronounced. The influence of the magnitude of 
each stress component cannot be clearly correlated with the effect of 
out-of-phase loading. To better understand the effect of stress levels in 
interaction with the phase shift, a partial dependence plot is created 
analogous to Fig. 6 by varying the phase shift along with each of both 
stress components while averaging the results over each fatigue test, i.e. 
for each experimental value of the other stress component, within the 
corresponding test program, see Fig. 7.

Fig. 7 shows a linear correlation between the phase shift and the 
endurable stress range for a given fatigue life for both stress components. 
An increase in each of both stress components leads to a similar and 
slightly increasing effect of phase shifts; however, the reduced effect at 
lower stress levels might be due to specimens made of aluminum and 
magnesium, as only they are subjected to stress ranges around 50 MPa 
and less. Moreover, since the underlying database includes almost 
exclusively phase shifts of 45◦ and 90◦, the predictions between these 
values are not statistically justified, but interpolated.

The ratio of shear to normal stress is commonly assumed to influence 
the fatigue life under out-of-phase loading. As the combined effect of 
three variables on the fatigue life is not displayable anymore, the fatigue 
life reducing effect under 90◦ phase shifts compared to in-phase loading 
is investigated with respect to the corresponding shear to normal stress 
ratio directly using a fatigue life factor. The fatigue life factor for a given 
stress component ratio is defined as the average ratio of the predicted 
fatigue life under 90◦ phase shift to 0◦ phase shift over all corresponding 
fatigue tests. The resulting factors for each stress component ratio with 
sufficient fatigue tests to derive at least one S-N curve are shown in 

Fig. 3. Predicted number of cycles from the SEC over the true number of cycles 
from fatigue testing.

Fig. 4. Architecture of the artificial neural network.

Table 2 
Hyperparameters of the artificial neural network 
[13].

Parameters Value

Minibatch size 10
Momentum 0.5
Dropout 0.0
Regularization 0.5
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Fig. 8.
The number of different stress component ratios is limited to the 

marked values; however, Fig. 8 indicates a higher effect of out-of-phase 

loading for similar stress levels. Since the fatigue resistance under shear 
loading is often higher than under normal loading, the highest effect is 
expected at a stress component ratio slightly above 1, corresponding to a 

Fig. 5. Predicted number of cycles from the ANN over the true number of cycles from fatigue testing.

Fig. 6. Partial dependence plot on a logarithmic scale (a) and a linear scale (b).
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similar damaging effect of both stress components under uniaxial 
loading. Furthermore, Fig. 8 allows quantifying the effect of out-of- 
phase loading inherent in the ANN with a fatigue life reduction by 
around 50 %–70 %.

5.3. Extreme gradient boosting

Artificial neural networks seem well suited to estimate the fatigue 
strength under multiaxial loading, as they are able to approximate a 
continuous and piecewise linear functional representation of the semi- 

elliptical relationship describing the fatigue behavior of welded speci
mens under non-proportional loading, especially when using the ReLU 
activation function. In contrast, the XGboost-algorithm combines data 
sequentially using decision trees [13]. As a result, also an approximation 
of the physical relationship is learned based on the statistical data 
structures without explicitly mapping the underlying physical relation
ship; however, the approximation is not as smooth as the one of the ANN 
and offers a piecewise constant approximation [43]. This section ana
lyzes the predictive performance of XGBoost across various feature 
configurations and prediction scenarios, comparing the results with 
those of the ANN and the SEC for forecasting the fatigue life of welded 
specimens under non-proportional loading. The XGBoost-model is built 
using the open source python library xgboost (version 2.1.1).

5.3.1. Predictions with stress-life curve parameters
The S-N curve parameters are specific to individual test programs 

and describe the fatigue strength under the respective test conditions. 
These parameters are utilized as features for the XGBoost-model 
together with the load-related parameters including interaction pa
rameters like the phase shift between the normal and the shear stress. 
The analysis also distinguishes between a random split for the creation 
of the 14 CV folds and a program-wise split. While the random split 
highlights the model's predictive ability within the overall data domain, 
the program-wise split forces the model to make predictions for previ
ously unseen data constellations. Fig. 9(a) shows the predicted number 
of cycles for the program-wise split and Fig. 9(b) for the random split. 
The random splitting for the CV demonstrates good prediction accuracy 
according to the applied error metrics which are even lower than metrics 
of the ANN and the SEC. On the other hand, the prediction accuracy for 
the program-wise splits is significantly lower for XGBoost.

An advantage of the XGBoost-framework is the interpretability of the 
tree structure. This allows analyzing the decision-making process 
retrospectively with, e.g., the SHAP-framework. SHAP is a game- 
theoretical framework for interpreting the predictions of machine 
learning models. For XGBoost, SHAP uses a model-specific TreeEx
plainer to efficiently compute the contribution of each feature to indi
vidual predictions [44]. This allows further investigations to be carried 
out in addition to the pure comparison of the predictions, such as 
analyzing the influence of S-N curve parameters on the prediction ac
curacy. The TreeExplainer is built using the open-source python library 
shap (version 0.45.1).

Fig. 9(c) shows the mean of the SHAP values for the prediction made 
by the randomly split 14-fold CV and the influence of the respective 
feature value on the SHAP values. The SHAP beeswarm plot on the right 
side of the figure visualizes the distribution of SHAP values for each 
feature, where each point represents an individual specimen. The hori
zontal position reflects the feature's contribution to the predicted fatigue 
life, and the color indicates the corresponding feature value. The most 
influential features in the model are the shear stress and normal stress, 
which aligns with theoretical expectations. Notably, positive SHAP 
values, which indicate an increase in the predicted fatigue life, are 
associated with low stress values. This implies that the model predicts 
longer fatigue life under lower applied stresses, which is consistent with 
physical understanding. The next most impactful features are the knee 
point and the scatter of the normal stress S-N curves. This highlights that 
S-N curve parameters have a significant influence on the fatigue life 
prediction in the XGBoost model. Moreover, the phase shift proves to be 
a crucial feature for the predictions, revealing a clear trend in its effect 
on the output. In the presence of a phase shift, the predicted number of 
cycles decrease and vice versa. In contrast, many of the features are 
found to have no significant impact on the predictions. For example, the 
stress ratios and the mean stresses barely affect the predictions. Simi
larly, the specimen type shows no significant influence.

5.3.2. Predictions separated by material classes
The previous analysis shows that the XGBoost model is able to 

Fig. 7. Partial dependence plot on the influence of phase shifts.

Fig. 8. Fatigue life reduction under 90◦ compared to 0◦ phase shift as a func
tion of the ratio of shear to normal stress.
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reliably predict the fatigue strength when the data is randomly split. 
This is especially true when S-N curve parameters are included as fea
tures; however, if a program-wise CV is used, the model performance 
drops significantly. This indicates that the model strongly benefits from 
test program-wise information contained in the training set when 
randomly split.

In order to check the generalizability of the XGBoost model, the 
training is therefore restricted to features that cannot be clearly assigned 
to a single test program. By encoding categorical features such as ma
terial class or weld seam condition, further influencing variables can be 

included in the prediction. Instead of specific material designations, only 
superordinate material classes (aluminum, steel, magnesium) are used. 
This makes it possible to investigate whether the model can make 
generalizable predictions even without direct knowledge of program 
specific characteristics. It turns out that the prediction accuracy for a 
random CV (RMSE = 0.31) is slightly worse but still close to that of the 
ANN (RMSE = 0.28) (Fig. 10(a)). In contrast, the prediction accuracy 
remains at the same level with a program-wise split as when using the 
program-wise split with the S-N curve parameters. This shows that the 
model can identify generalizable relationships, but only within the 

Fig. 9. The predicted number of cycles from program wise CV (a) and the predicted number of cycles from randomly shuffled 14-fold CV (b) with the XGBoost- 
Algorithm over the true number of cycles from the fatigue tests. SHAP Analysis of the predictions made by the random 14-fold CV (c).
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programs, not across them.
Having a closer look on the materials in Fig. 10(a), one observes 

differences in the prediction accuracy for the respective materials. The 
specimens made of steel show a greater scatter of the predictions than 
the specimens with aluminum or magnesium as the base material. 
Additionally, the SHAP analysis in Fig. 10(b) shows a high influence of 
the base material on the fatigue life prediction. Feature values are not 
assigned in the SHAP beeswarm plot because the encoded categorical 
features do not represent actual values what results in grey points; 
however, also the weld condition (as-welded or stress relieved) has an 
impact on the XGBoost prediction while the post treatment (as-welded 
or ground flush) and the specimen type (tube-tube or tube-flange) do not 
play a role for the prediction.

5.3.3. Predictions without information about material and stress-life curve 
parameters

The analysis of the base material's influence has shown that it 

significantly affects fatigue strength prediction—comparable to the 
impact of the S-N curve parameters. While the S-N curve parameters can 
be directly attributed to individual test programs, the distribution of 
material classes spans multiple programs, offering broader generaliza
tion potential; however, this raises the question of whether such cate
gorical features are essential at all. Both the SEC and ANN models 
achieve accurate predictions without relying on categorical inputs like 
material class. Consequently, the investigation of the XGBoost-based 
approach is extended to include predictions based solely on stress- 
related features, in order to assess the model’s performance without 
categorical dependencies.

The prediction accuracy decreases slightly, while comparing Fig. 11 
(a) with Fig. 10(a) and Fig. 9(b), for this feature constellation, but is still 
within the SEC range; however, it is noticeable that there are more 
outliers, some of which deviate significantly from the true value. The 
SHAP analysis shows that only four features actually contribute signif
icantly to the model prediction—the shear stress, the normal stress, the 

Fig. 10. Predicted number of cycles from randomly shuffled 14-fold cross-validation using program-spanning features with the XGBoost algorithm versus the true 
number of cycles from fatigue tests (a). SHAP analysis of the corresponding predictions (b).

Fig. 11. Predicted number of cycles from randomly shuffled 14-fold cross-validation using only stress-related features with the XGBoost algorithm versus the true 
number of cycles from fatigue tests (a). SHAP analysis of the corresponding predictions (b).
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phase shift and the weld seam condition. It is striking that the normal 
stress values cannot longer be assigned so clearly to the level of the 
SHAP values. Medium normal stresses are also associated with high 
SHAP values. In contrast, the influence of the shear stress and the phase 
shift on the model prediction remains almost unchanged.

5.3.4. Model agnostic interpretation
The differentiated analysis of the features has shown that certain 

parameters—such as the base material or specific S-N curve character
istics—can significantly influence the model's predictions. Nevertheless, 
the principal stress directions and their phase shift remain the most 
decisive factors in predicting fatigue life. As demonstrated with the ANN 
and implemented in the SEC approach, the semi-elliptical relationship 
between the principal stress components forms the basis for reliable 
fatigue life predictions. The partial dependence plot in Fig. 12 shows the 
influence of the stress directions on the fatigue life prediction for the 
XGBoost model trained on the stress-related features and the S-N curve 
parameter. For the comparison with the ANN the program-wise CV is 
chosen. The same semi-elliptical relationship between the stress com
ponents can also be found for the XGBoost model; however, it is 
noticeable that there are local deviations and the curves are less smooth. 
This observation is typical for tree-based models such as XGBoost. Due to 
the binary division of the feature space during training, discrete decision 
thresholds arise, which appear in the PDPs as abrupt jumps or plateaus. 
These locally sharp transitions can be an indication of limited general
izability in data-poor regions, as has been shown for the program-wise 
CV.

5.4. Comparison of results

Despite the different approaches, the fatigue life prediction using 
XGBoost also shows a good estimation of the fatigue strength as long as 
the training data domain covers the test splits. In case the test split is not 
covered by the training data domain, the poor extrapolation ability of 
the ensemble tree method becomes obvious. Since the XGBoost algo
rithm relies on stochastical data splits no physical relationships are 

learned. The difference is clearly shown by the comparison of the CV 
routines; the random split in 14 folds works much better than the test 
program wise splits. This can also be seen after features that can be 
directly associated with specific programs have been removed and 
partly replaced by program-spanning features. This indicates that the 
fatigue strength of the welds is strongly dependent on the respective test 
program, e.g., due to specific load types, test setups, geometries, etc., 
which cannot be adequately represented by general features; however, 
inside the training data domain the XGBoost model works well and 
performs similarly as the ANN. Fig. 13 directly compares the prediction 
accuracies using identical feature sets, including S–N curve parameters, 
showing the results of the 14-fold cross-validation with random splits for 
the XGBoost model and a program-by-program split for the ANN, whose 
performance is largely unaffected by the choice of data splitting 
strategy.

A comparison of the PDPs of ANN and XGBoost shows that a more 
constant relationship between the stress directions and the fatigue 
strength is learnt using ANN. With the XGBoost-model, it can be seen 
that the semi-elliptical relationship is only learnt selectively, particu
larly in the data-poor range. This indicates that more data is required for 
the XGBoost-model, which depicts more test programs, if the predictions 
are to be made for new test programs; however, if the database is diverse 
enough, the XGBoost-model works excellently, as has been shown in the 
CV with random split.

6. Discussion

The comparison of the extended classical approach with the SEC and 
the ML based fatigue life predictions shows that the ML based prediction 
has great potential for fatigue strength assessment of non-proportionally 
loaded welds. The complexity of the interaction of the different char
acteristics makes the usage of ML methods for this type of prediction 
particularly interesting, as they are generally better able to map non- 
linear and high-dimensional relationships; however, the comparison 
between ANN and XGBoost shows that different ML algorithms have 
different characteristics with regard to the required features and 

Fig. 12. Partial Dependence Plot showing the dependence of the shear stress and the normal stress on the fatigue life prediction for the XGBoost model on loga
rithmic scale for fixed prediction levels.
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generalizability. While the prediction of the ANN is independent of the 
type of data handling of the CV, the XGBoost model achieves high ac
curacy with random data splits and not with test program-wise data 
splits. This shows that the ANN learns the semi-elliptical relationship of 
the load parameters more independently of the data, which goes hand in 
hand with good generalizability to test programs not included in the 
training. The PDPs also show that the learned curves from the ANN are 
smoother and more stable than them of the XGBoost model. With the 
XGBoost models that were not trained on S-N curve parameters, it was 
shown that ML-based predictions are possible with satisfactory accuracy 
even without information about the associated S-N curves. It was shown 
that the greatest challenge lies in mapping more general influencing 
variables in the feature space of the models. Encoding categorical fea
tures, such as the weld condition and the base material, has a positive 
influence on the prediction. Other more general features such as the 
local weld geometry could further improve the prediction; however, any 
interpretation of the stress levels is based on nominal stresses, neglecting 
any stress rising effect of the weld toe or root notch. Considering stress 
gradient effects and thus including any geometric stress rising effects 
could lead to different findings. Moreover, there has been no evaluation 
of non-proportional loadings beyond phase shifts, dominant stress 
components, or multiaxial loading including stress components parallel 
to the weld. Although multiaxial loading with stresses parallel to the 
weld has been investigated in Bauer et al. [5], showing no difference 
between the assessment of different stress components. Moreover, the 
data including phase shifts lower than 90◦ is limited to very few test 
programs based on different materials. The derived effect of a 45◦ phase 
shift might therefore be coincidental. All findings are based on statistical 
correlations within the presented dataset. The generalizability of the 
results should be further examined as more data becomes available.

7. Conclusions

The comparison between the super ellipse criterion (SEC), an artifi
cial neural network (ANN), and an extreme gradient boosting (XGBoost) 
machine learning (ML)model has confirmed that the ML-based models 
enable reliable prediction of fatigue life even with a limited database; 
however, there are differences between the ML methods due to the 

training algorithms. The following conclusions can be drawn from the 
comparison between the machine learning methods, their model- 
agnostic and model-specific interpretations, and the SEC approach: 

• Overall, the ANN demonstrates superior performance, slightly out
performing the SEC in accuracy and the XGBoost model in terms of 
stability and generalizability across the available dataset.

• For the XGBoost model, the amount of data is too small to generalize 
to completely unknown test programs. This is shown by less accurate 
predictions when the 14-fold Cross Validation (CV) is program-wise 
and also by discontinuities in the Partial Dependence Plot (PDP).

• The XGBoost model provides very accurate predictions when trained 
on random data splits, where features that are not directly related to 
a test program, such as the base material or the post-treatment, can 
be used instead of the S-N curve parameters.

• The Shapley Additive Explanations (SHAP) analyses have shown that 
the normal stress and the shear stress have the greatest overall in
fluence on the prediction, followed by the phase shift. This aligns 
with the findings derived from the PDP.

• When using categorical features such as the base material and the 
weld condition, these contribute significantly to the prediction with 
the XGBoost model.

• With the ANN, reliable predictions can be made regardless of the 
handling of the data for the CV, as the super-elliptical relationship of 
the stress components is learnt, which is reflected in smooth curves 
in the PDPs.
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