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Evaluating the fatigue life of welded joints under multiaxial loading is a key challenge in structural engineering.
This study explores machine learning (ML) methods for predicting fatigue life and compares their performance
against the novel super ellipse criterion, which is an analytical approach that aims to improve current design
standard methods (e.g., Eurocode 3, IIW). Using a dataset of uniaxial and multiaxial fatigue tests with varying
phase angles, ML models—including artificial neural networks and extreme gradient boosting (XGBoost)—are
trained on features like stress amplitudes, phase differences, and material properties. Artificial neural networks

provide high accuracy, while tree-based models like XGBoost offer better interpretability via model agnostic
interpretation using Explainable Artificial Intelligence. Results show ML models can outperform traditional
criteria, especially under non-proportional loading, but face limitations near the edges of the training data. This
work highlights the potential and challenges of ML in fatigue prediction and highlights their value for enhancing
the safety and reliability of welded structures.

1. Introduction

Fatigue life evaluation of welded joints under multiaxial loading
presents a significant challenge in structural engineering, requiring ac-
curate prediction methods to ensure safety and reliability. Herein,
multiaxial fatigue loading in welded joints refers to the simultaneous
action of different types of stresses—most commonly, normal stresses
(0x) acting perpendicular to the weld and shear stresses (zy,) acting
parallel to it. This combination creates a complex stress state that
significantly influences fatigue behavior and makes accurate fatigue
assessment challenging.

Two primary types of multiaxial loading conditions are typically
considered: proportional and non-proportional loading. In proportional
loading, the stress components vary over time but maintain a constant
phase relationship (ox(t)/7x/(t) = const.). As a result, the directions of
the principal stresses remain fixed, and the loading scenario can often be
approximated by uniaxial loading applied at an inclined angle to the
weld [1]. Consequently, traditional assessment methods may still yield
reasonable predictions in such cases; however, in non-proportional
loading, the stress components vary independently and are out of

phase with one another (o (t)/7x (t) # const.), have different stress ra-
tios (R, # R;), or have different frequencies (f, # f;). This leads to a
time-dependent rotation of the principal stress directions, introducing
additional complexity into the fatigue process. Experimental studies
have shown that such conditions can lead to increased fatigue damage
[2], and the mechanisms governing fatigue crack initiation [3] and
growth may differ significantly from those under proportional or uni-
axial loading [4], which is addressed in design standards by higher
safety factors.

To address these complexities, a wide range of multiaxial fatigue
criteria have been developed and proposed in the literature. These
criteria generally fall into four broad categories: stress-based interaction
equations, equivalent stresses, critical plane approaches, and integral
approaches. Stress-based interaction methods attempt to combine the
effects of normal and shear stresses using mathematical formulations,
while critical plane models focus on evaluating stresses and strains on
specific material planes where fatigue damage is most likely to initiate.
Integral approaches are based not only on the most critical plane but
integrate an equivalent stress over all planes.

Despite many years of research on multiaxial fatigue, there is still no
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general agreement—neither among design codes or within the research
community—on a single, universally applicable multiaxial fatigue cri-
terion for welded joints. The variability in experimental results, coupled
with the diverse nature of multiaxial stress states, continues to pose a
significant challenge in selecting and applying the most appropriate
fatigue assessment model. As a result, engineers and researchers often
rely on a combination of empirical data, theoretical frameworks, and
engineering judgment when evaluating the fatigue performance of
welded structures subjected to complex multiaxial loading.

ML methods offer a promising alternative to traditional—often either
empirical or numerical—methods, as ML methods are particularly suc-
cessful at capturing and modeling complex data interactions. The po-
tential of ML has been demonstrated in numerous studies; nevertheless,
significant differences exist between ML models. Traditional ML models,
e.g., based on decision trees, are statistical in nature and focus on the
identification of patterns within the data. On the other hand, artificial
neural networks learn to approximate complex relationships in data by
adjusting weights in a layered structure and by using nonlinear activa-
tion functions to capture both simple and complex patterns. Both ap-
proaches offer distinct advantages. Artificial neural networks, as purely
black-box models, often achieve higher accuracy compared to tradi-
tional ML methods; however, models that leverage data patterns directly
tend to be more interpretable, which enables reliable interpretation of
results and to reveal hidden correlations within the data.

This study compares various ML approaches to a state-of-the-art
design criterion, i.e., the super ellipse criterion [5], for assessing the
fatigue life of welded joints. A comprehensive dataset comprising uni-
axial fatigue test results under nominal and shear loading, as well as
multiaxial fatigue test data with varying phase angles, forms the basis of
the analysis. The ML models are trained to predict fatigue life using a
diverse set of features derived from stress amplitudes, phase differences,
and material properties. The super ellipse criterion [5], a novel analyt-
ical method, serves as a benchmark for evaluating ML performance.

This approach specifically seeks to analyze data interactions leading
to the fatigue life predictions, compare the results to state-of-the art
assessment, and assess the interpretability and effectiveness of these
methods in providing insights into complex fatigue phenomena. Beyond
neural networks, the study also employs the ensemble tree-based algo-
rithm, Extreme Gradient Boosting (XGBoost), to predict fatigue life
based on multiaxial fatigue test data from welded joints, with the
resulting predictions being compared. To facilitate model-agnostic
interpretation of the XGBoost predictions, the Shapley Additive Expla-
nations (SHAP) framework is utilized. This work highlights the advan-
tages and limitations of ML models for fatigue life prediction and
provides insights into their application to enhance the reliability of
welded structures subjected to multiaxial stresses. In addition, the re-
sults of the ML models are interpreted using partial dependence plots by
assessing the relation between fatigue life a variation of selected input
variables. This facilitates an assessment of the results based on domain
knowledge.

2. Multiaxial fatigue of welded joints

Fatigue of welded joints under multiaxial loading is under investi-
gation since around the 1960s for proportional loading and since around
the 1980s for non-proportional loading [6]; however, even if multiaxial
loading is quite common in cyclically loaded structures, available fa-
tigue data is rare. Only around 20 experimental campaigns on welded
steel joints have been published, which performed fatigue tests under
non-proportional loading. In these investigation, sometimes only two
fatigue tests have been performed for identical load scenarios [7]. Thus,
the data basis is limited.

Nevertheless, various fatigue assessment approaches have been
applied on the existing data and found introduction into common rules
and guidelines, such as the [IW-recommendations [8], Eurocode 3 [9],
DNV [10] or FKM [11]. The majority of guidelines use interaction
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equations for the assessment that takes into account the degree of uti-
lization, i.e., the ratio between acting and endurable stresses. Despite the
general similarities, the details of the approaches vary and lead to high
differences in the resulting assessment. One example is the effect of non-
proportionality: Whereas the [IW-recommendation proposes a reduction
of fatigue strength by a reduction of a so-called comparison value, which
can be interpreted as a penalty factor, the FKM-guideline provides
different criteria for proportional and non-proportional loading. The
Eurocode, however, does not consider this damaging effect, even so it is
experimentally proven [2]. This shows, that there is still, after 50 years
of research uncertainties on the influences of multiaxial and especially
non-proportional stress states.

3. Analytical and machine learning-based fatigue life
predictions for multiaxial fatigue tests

3.1. Super ellipse criterion

The super ellipse criterion (SEC) [12] is a multiaxial fatigue assess-
ment criterion assuming ductile material behavior, i.e., a fatigue life
reduction under non-proportional compared to proportional loading
[13]. It has been developed on the basis of the presented database by
optimization of its parameters and provides both accurate and precise
predictions for all test programs included, while outperforming
commonly used criteria from the literature and guidelines. Accordingly,
it will serve as a benchmark for evaluation of the machine learning
approaches based on the experimental nominal stresses.

Based on an interaction equation, the SEC assumes a super elliptical
relationship between the cyclic degrees of utilization of both the stress
range normal to the weld Ac, and shear stress range Az for a given cycle
number N under both proportional and non-proportional loading. The
utilization describes the ratio between the applied stress to the endur-
able stress, denoted as the fatigue resistance Ac, . (N) and Azg(N), which
is derived from the corresponding uniaxial S-N curve for a given cycle
number N. The SEC is presented in the following:

(Acﬁjézv) ) * <Afi(TN) > <1 €)

To predict fatigue life, the SEC is transformed into an equation and
solved numerically with respect to N. Multiaxial loading is differentiated
using an exponent of ¢ = 2.15 for proportional and ¢ = 1.26 for non-
proportional loading. The super elliptical relationships of the utiliza-
tions inherent to Equation (1) are shown graphically in Fig. 1 for both
proportional and non-proportional loading.

Within this publication, the SEC is evaluated based on fatigue
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Fig. 1. Graphical illustration of the super ellipse criterion.
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resistances derived directly from the corresponding experiments under
uniaxial loading. The choice of the stress concept, i.e. the nominal,
structural, notch, or effective stress concept, is therefore irrelevant, as
the stress concentration factors would be applied to both the applied and
the endurable stress range and thus cancel each other out; however, the
application of the SEC can also be based on design S-N curves from codes
or standards for any stress concept by determining the corresponding
applied stress components within the given stress concept. An evalua-
tion based on effective stresses derived by the critical distance and the
stress averaging approach has shown good results [14].

3.2. Machine learning based methods

Machine learning techniques are data-driven methods that are
created to yield accurate prediction in requiring tasks. In the context of
fatigue assessment of welded joints, ML methodologies have shown
significant promise, as they can process multivariate data swiftly and
capture complex non-linear interactions among various parameter-
s—such as load characteristics, geometrical features, and material
properties. While ML models excel in computational efficiency and
predictive accuracy, their successful implementation often requires
large, high-quality datasets [15] and/or a solid incorporation of domain
knowledge to evaluate and interpret results [16]. Interpretable models
are essential, as they must allow experts to validate predictions against
established mechanical principles. Moreover, the generalizability of ML
models can be challenged if new data fall outside the feature space of the
training dataset, leading to potential issues like overfitting and reduced
reliability, see Barbiero et al. [17]. Consequently, the verification and
validation of ML predictions become crucial before the deployment for
fatigue life assessment. Such methods offer an attractive alternative to
traditional fatigue assessment approaches that often rely on idealiza-
tions and simplifications.

There are plenty of studies on the applications of ML-based models to
assess the fatigue strength of machined or additively manufactured
components even under multiaxial loading [18]; however, studies on
welded joints are limited.

Among various machine learning methods, artificial neural networks
are most widely used for fatigue assessment [19]. Common input fea-
tures for fatigue life prediction models include load- and material-
related parameters, defect characteristics such as size and location,
and stress concentration factors [20]. Recent approaches, aim to assess
the fatigue strength of welded joints by including information about the
weld geometry, c.f., [21-23]. This is, however, only possible if detailed
information about the weld geometry, e.g., from optical surface scans
are available. The data for the present study is taken from various
studies and thus not contain such data. Thus, the assessment is limited to
loading conditions, phase differences, and material properties, which is
subsequently presented in more detail.

3.2.1. Artificial neural network

Fatigue assessment under multiaxial loading is one of the most
challenging fields in structural engineering due to the complex in-
teractions between stress and strain across different directions. Tradi-
tional deterministic models, such as critical plane or energy-based
approaches, rely on simplified assumptions and material-specific
empirical data. These methods often lack the flexibility needed to cap-
ture nonlinear effects and variability in real-world loading conditions.

Artificial neural networks (ANNs) provide a purely data-driven
alternative by learning direct mappings between input features and
fatigue-related outputs without presupposing functional forms. ANNs
consist of input, hidden, and output layers where interconnected neu-
rons apply nonlinear activation functions, enabling the network to
capture complex relationships in experimental datasets. Their flexibility
allows them to process diverse mechanical and loading parameters
simultaneously, making them suitable for multiaxial fatigue applica-
tions [24].
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Applications of ANNs in this context include fatigue life prediction
and the estimation of missing material parameters essential for multi-
axial criteria. For instance, ANNs have been used to predict fatigue life
directly from experimental datasets under complex load paths, demon-
strating improved accuracy compared with traditional empirical
models. They have also been applied to estimate fatigue strengths (e.g.,
axial and torsional fatigue limits) when direct experimental data are
unavailable, thereby enabling the application of multiaxial fatigue
criteria [25]. In comparative studies, neural network models achieved
prediction quality on par with or better than conventional regression
and other machine learning techniques, although dataset size remains a
critical factor in their performance [24,25].

3.2.2. Extreme gradient boosting

Another data-driven alternative to traditional methods is Extreme
Gradient Boosting (XGBoost), which is an ensemble machine learning
method that builds predictive models from multiple sequentially opti-
mized regression trees. Unlike conventional regression, it excels at
handling nonlinear relationships, variable interactions, and heteroge-
neous datasets, making it suitable for fatigue problems where stress
states, material properties, and multiaxial loading histories interact in
complex ways [25]. The method incorporates both boosting and regu-
larization, which reduces overfitting and improves generalization even
on relatively small experimental fatigue datasets.

The feature-importance functionality of XGBoost and the possibility
to link it to model agnostic interpretation tools such as SHAP also
allowed identification of the most influential mechanical and fatigue
properties for parameter estimation, thereby enhancing interpretability
of the predictions.

In multiaxial fatigue applications, XGBoost has rarely been used for
fatigue life estimation, see, e.g., Zhang et al. [24]; however, it is more
frequently used for fatigue assessment under uniaxial loading
[21,26-30]. This is, however, not surprising given the few studies on
fatigue life estimation under multiaxial loading in general.

4. Database on multiaxial fatigue tests of welded joints

The database consists of fatigue tests of welded joints under constant
and variable amplitude pure normal stress, pure shear stress, propor-
tional, and out-of-phase loading while showing ductile material
behavior. All stresses are nominal stresses. To each multiaxial fatigue
test there are corresponding fatigue test series under pure normal and
shear stress with sufficient individual points to derive meaningful S-N
curves. Other types of non-proportionality as well as stresses parallel to
the weld are not considered due to the very limited number of tests in the
literature. Runouts are excluded within the prediction of multiaxial fa-
tigue life. Failure refers to through-thickness cracking or fracture.
Table 1 and Fig. 2 provide a broad overview of each multiaxial fatigue
test program and the corresponding characteristics. A test program is
defined as all fatigue tests with equal uniaxial fatigue resistance.

The uniaxial reference stress-life (S-N) curves required for multiaxial
fatigue assessment are derived from experiments, including runouts,
using the maximum likelihood method by optimization in the direction
of the fatigue life, while clamping failure has been interpreted as runout
[13]. Knee points could be determined only for some tests sets based on
aluminum and magnesium. For the remaining test sets and in accor-
dance with the IIW recommendations [8], a knee point of 107 has been
assumed for normal stresses and a knee point of 108 for shear stresses,
both curves have a slope after the knee point of m = 22. Variable
amplitude loading always refers to Gaussian distributions and is trans-
formed to constant amplitude equivalents based on the S-N curve under
constant amplitude loading according to the Palmgren-Miner rule as
stated within the IIW recommendations [8]:
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Table 1
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Multiaxial fatigue database for welded joints with ductile material behavior (T-T: Tube-Tube, T-F: Tube-Flange, aw: as welded, sr: stress relieved, gr: ground flush, P:
proportional, OOP: out-of-phase, *specimens from Razmjoo under pure torsion loading partially failed in the weld throat) [13].

# Primary author(s) Specimen  Material Thickness in Weld Amplitude R Phase shift Failure Number P/
mm condition in° location OOP
01 Eibl [31] T-T Steel (St 35) 2 aw constant -1 90 Root 18/8
02 Exel [32]/ T-T Magnesium (AZ31) 1.5 aw constant/ -1 45, 90/45 Root 18/19
Bolchoun [33] variable
03 Exel [32]/ T-T Magnesium (AZ61) 1.5 aw constant/ -1 45, 90/45 Root 17/22
Bolchoun [33] variable
04 Bertini [34], T-F Steel (S355JR) 10 aw constant -1 90 Root 10//9
Frendo [35]
05 Bertini [34], T-F Steel (S355JR) 10 aw constant 0 90 Root 11/8
Frendo [35]
06 Razmjoo [36] T-F Steel (BS 4360 Grade 3.2 aw constant 0 90 Toe* 7/7
50E)
07  Sonsino [37]/ T-F Steel (StE 460) 10 sr constant/ -1 90 Toe 15/17
Sonsino [38] variable
08 Sonsino [37] T-T Steel (StE 460) 6 sr + gf constant -1 90 Toe 9/9
09  Storzel [39] T-T Steel (5235 G2T) 1 aw constant -1 45, 90 Root 21/24
10 Wiebesiek [40] T-T Aluminum 1.5 aw constant, -1 45, 90 Root 27/31
(AlMg3,5Mn) variable
11 Wiebesiek [40] T-T Aluminum 1.5 aw constant, -1 45, 90 Root 23/19
(AlSi1MgMn T6) variable
12 Winther [41] T-T Steel (S355J2H) 3.1 aw constant -1 22.5, 45, Toe 5/25
67.5, 90
13 Witt [42] T-F Steel (StE 460) 8.0 sr constant, -1 90 Toe 16/14
variable
14 Witt [42] T-F Steel (StE 460) 8.0 sr constant, 0 90 Toe 13/15
variable
v A N
: ) o
o . O, ' i
Eibl, Exel, Bolchoun,  Bertini, Frendo Razmjoo Sonsino (Tube-Tube) Sonsino (Tube-Flange) Winther Witt

Storzel, Wiebesiek

Fig. 2. Specimens from the database [13].

o 1 S (e Ad) + Ao e Sy ¢ Acy)
O-eq N Dspec ¢

Yt
while m denotes the slope of the S-N curve, n the number of cycles for
each load spectrum block, and Dy, the specific Miner sum with Dg, =
0.5 under assumption of no high fluctuations of the mean stresses. The
indices i and k refer to the values above the knee point, the indices j and [
to those below the knee point of the S-N curve for Aceq > Aoy OF Vice
versa for Aceq < AGknee-

@

5. Results of analytical and machine learning-based fatigue
assessments of multiaxial fatigue tests of welded joints

5.1. Super ellipse criterion

The relationship between the utilizations of A¢, and Az is close to an
elliptical relationship under proportional loading. The lower exponents
under non-proportional loading reflect a less curvy correlation corre-
sponding to a higher penalty for more similar utilizations of both stress
components. This can be interpreted as a fatigue life reduction factor
which depends on the ratio between both stress components. As opposed
to methods with a constant penalty factor [8,10], the utilization auto-
matically becomes 1 if the loading is uniaxial. Accordingly, no differ-
entiation as to whether both stress components are significant enough to
justify the penalty has to be made as this is implicitly and continuously

considered. Based on the presented database, these relationships proved
to describe the utilizations derived from the experiments under both
proportional and non-proportional very well [13], even though the
available number of fatigue tests with one dominant stress component is
very limited. An extension by the stress component parallel to the weld
is recommended with the same exponent, resulting in a super ellipsoid
criteria, but validated yet only for proportional loading [5]. The pre-
dicted fatigue life over the true number of cycles from the multiaxial
fatigue tests is shown in Fig. 3.

5.2. Artificial neural network

5.2.1. Prediction results

Artificial neural networks are trained on the basis of the presented
database using k-fold cross-validation (CV) by differentiating between
test programs to prevent overfitting. The implementation is based on the
open source python library PyTorch (version 2.2). Program-wise cross
validation is relevant as each test program is based on the same fatigue
resistance and hence the same input variables for the ANN. Accordingly,
for the fatigue life prediction of each of the 14 test programs, a neural
network is trained based on the fatigue data of all the other test pro-
grams [13]. Random cross-validation without differentiation between
test programs and varying ratios of training and test data resulted in a
very similar prediction quality. To avoid any effect of variable amplitude
loading, only constant amplitude loading is used for training.

The input parameters consist of the applied normal stress range Ao ,
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Fig. 3. Predicted number of cycles from the SEC over the true number of cycles
from fatigue testing.

the shear stress range Az, the phase shift, as well as the parameters of the
fatigue resistance S-N curves under uniaxial loading Ac,,(N) and
Azg(N), i.e., the stress and cycle number at the knee point as well as the
slopes before and after the knee point, neglecting the slope after the knee
point for shear stress due to high correlations with the slope for normal
stress. All input and output variables are transformed to logarithmic
values to facilitate training by realizing similar magnitudes.

The ANN are constructed based on two hidden layers with 8 nodes
each and a ReLU activation function, see Fig. 4. Training is performed
using backpropagation while applying batch normalization to scale the
inputs of all layers to similar means and variances. The issue of local
minima is addressed using mini-batches (10 samples per batch), mo-
mentum (factor of 0.5), and multiple random weight initializations.
Furthermore, as dropout did not enhance the training process, only
regularization (factor of 0.5) is applied to avoid overfitting. Detailed
information on the hyperparameter optimization are given in Table 2.
The prediction results are shown in Fig. 5 where the predicted number of
cycles from the ANN is plotted versus the true number of cycles from the
fatigue tests.

5.2.2. Dependence plots

The results and behavior of the neural networks can be interpreted
via partial dependence plots (PDP). Partial dependence plots are created
by calculating the mean fatigue life over a variation of selected input

Load
(multiaxial) Ar(p ® : z
3 38
" " O, Fatigue life
Fatlgue.resilstance k: . . . . (multiaxial)
(uniaxial): Kk, . ‘ .
S-N curve Ny« . . .
parameters Tk ’ . ‘
k'r
Input layer Hidden layers Output layer

(ReLU)

Fig. 4. Architecture of the artificial neural network.

International Journal of Fatigue 206 (2026) 109459

Table 2

Hyperparameters of the artificial neural network

[13].
Parameters Value
Minibatch size 10
Momentum 0.5
Dropout 0.0
Regularization 0.5

variables within the test data while keeping all remaining variables
constant. Since the variables relating to the uniaxial fatigue resistance
are derived from experiments, load related variables such as the applied
normal and shear stress are varied assuming a phase shift of 0°, 45°, and
90°. Fig. 6 shows an averaged partial dependence plot over all neural
networks on a scalar and logarithmic scale.

The ANN learned a curved relationship between normal and shear
stress for a given cycle number. Since the logarithmic applied stresses
are used as input to the ANN, the logarithmic plot on the left directly
shows the learned behavior of the ANN; however, a transformation to
linear values allows a better interpretability. For areas with a dominant
stress component, the presented relationship is not statistically sup-
ported as there is no corresponding data within the database. Also, high
stress levels are based only on very few test programs with similar
normal to shear stress ratios, while the lower and medium stress levels
are based on various fatigue test programs with varying normal to shear
stress ratios. Considering the statistically sound areas under multiaxial
loading as well as uniaxial loading, a super elliptical relationship can be
derived on both a logarithmic and a linear scale.

In the partial dependence plots, fatigue life increases with increasing
stress in certain regions due to missing data in areas dominated by one
stress component, making those regions unrepresentative. Both plots
clearly show a significant reduction of endurable stresses, which is
equivalent to a reduction in fatigue life, under out-of-phase loading
compared to proportional loading. The fatigue life reduction seems to
increase with a higher phase shift, as for most stress levels, a 45° phase
shift reduces the endurable stresses by half as much as with a 90° phase
shift. Moreover, the effect of phase shifts declines when one stress
component becomes comparably small as the curvature under out-of-
phase loading is less pronounced. The influence of the magnitude of
each stress component cannot be clearly correlated with the effect of
out-of-phase loading. To better understand the effect of stress levels in
interaction with the phase shift, a partial dependence plot is created
analogous to Fig. 6 by varying the phase shift along with each of both
stress components while averaging the results over each fatigue test, i.e.
for each experimental value of the other stress component, within the
corresponding test program, see Fig. 7.

Fig. 7 shows a linear correlation between the phase shift and the
endurable stress range for a given fatigue life for both stress components.
An increase in each of both stress components leads to a similar and
slightly increasing effect of phase shifts; however, the reduced effect at
lower stress levels might be due to specimens made of aluminum and
magnesium, as only they are subjected to stress ranges around 50 MPa
and less. Moreover, since the underlying database includes almost
exclusively phase shifts of 45° and 90°, the predictions between these
values are not statistically justified, but interpolated.

The ratio of shear to normal stress is commonly assumed to influence
the fatigue life under out-of-phase loading. As the combined effect of
three variables on the fatigue life is not displayable anymore, the fatigue
life reducing effect under 90° phase shifts compared to in-phase loading
is investigated with respect to the corresponding shear to normal stress
ratio directly using a fatigue life factor. The fatigue life factor for a given
stress component ratio is defined as the average ratio of the predicted
fatigue life under 90° phase shift to 0° phase shift over all corresponding
fatigue tests. The resulting factors for each stress component ratio with
sufficient fatigue tests to derive at least one S-N curve are shown in
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Fig. 5. Predicted number of cycles from the ANN over the true number of cycles from fatigue testing.
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Fig. 8.
The number of different stress component ratios is limited to the
marked values; however, Fig. 8 indicates a higher effect of out-of-phase

loading for similar stress levels. Since the fatigue resistance under shear
loading is often higher than under normal loading, the highest effect is
expected at a stress component ratio slightly above 1, corresponding to a
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similar damaging effect of both stress components under uniaxial
loading. Furthermore, Fig. 8 allows quantifying the effect of out-of-
phase loading inherent in the ANN with a fatigue life reduction by
around 50 %-70 %.

5.3. Extreme gradient boosting

Artificial neural networks seem well suited to estimate the fatigue
strength under multiaxial loading, as they are able to approximate a
continuous and piecewise linear functional representation of the semi-
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elliptical relationship describing the fatigue behavior of welded speci-
mens under non-proportional loading, especially when using the ReLU
activation function. In contrast, the XGboost-algorithm combines data
sequentially using decision trees [13]. As a result, also an approximation
of the physical relationship is learned based on the statistical data
structures without explicitly mapping the underlying physical relation-
ship; however, the approximation is not as smooth as the one of the ANN
and offers a piecewise constant approximation [43]. This section ana-
lyzes the predictive performance of XGBoost across various feature
configurations and prediction scenarios, comparing the results with
those of the ANN and the SEC for forecasting the fatigue life of welded
specimens under non-proportional loading. The XGBoost-model is built
using the open source python library xgboost (version 2.1.1).

5.3.1. Predictions with stress-life curve parameters

The S-N curve parameters are specific to individual test programs
and describe the fatigue strength under the respective test conditions.
These parameters are utilized as features for the XGBoost-model
together with the load-related parameters including interaction pa-
rameters like the phase shift between the normal and the shear stress.
The analysis also distinguishes between a random split for the creation
of the 14 CV folds and a program-wise split. While the random split
highlights the model's predictive ability within the overall data domain,
the program-wise split forces the model to make predictions for previ-
ously unseen data constellations. Fig. 9(a) shows the predicted number
of cycles for the program-wise split and Fig. 9(b) for the random split.
The random splitting for the CV demonstrates good prediction accuracy
according to the applied error metrics which are even lower than metrics
of the ANN and the SEC. On the other hand, the prediction accuracy for
the program-wise splits is significantly lower for XGBoost.

An advantage of the XGBoost-framework is the interpretability of the
tree structure. This allows analyzing the decision-making process
retrospectively with, e.g., the SHAP-framework. SHAP is a game-
theoretical framework for interpreting the predictions of machine
learning models. For XGBoost, SHAP uses a model-specific TreeEx-
plainer to efficiently compute the contribution of each feature to indi-
vidual predictions [44]. This allows further investigations to be carried
out in addition to the pure comparison of the predictions, such as
analyzing the influence of S-N curve parameters on the prediction ac-
curacy. The TreeExplainer is built using the open-source python library
shap (version 0.45.1).

Fig. 9(c) shows the mean of the SHAP values for the prediction made
by the randomly split 14-fold CV and the influence of the respective
feature value on the SHAP values. The SHAP beeswarm plot on the right
side of the figure visualizes the distribution of SHAP values for each
feature, where each point represents an individual specimen. The hori-
zontal position reflects the feature's contribution to the predicted fatigue
life, and the color indicates the corresponding feature value. The most
influential features in the model are the shear stress and normal stress,
which aligns with theoretical expectations. Notably, positive SHAP
values, which indicate an increase in the predicted fatigue life, are
associated with low stress values. This implies that the model predicts
longer fatigue life under lower applied stresses, which is consistent with
physical understanding. The next most impactful features are the knee
point and the scatter of the normal stress S-N curves. This highlights that
S-N curve parameters have a significant influence on the fatigue life
prediction in the XGBoost model. Moreover, the phase shift proves to be
a crucial feature for the predictions, revealing a clear trend in its effect
on the output. In the presence of a phase shift, the predicted number of
cycles decrease and vice versa. In contrast, many of the features are
found to have no significant impact on the predictions. For example, the
stress ratios and the mean stresses barely affect the predictions. Simi-
larly, the specimen type shows no significant influence.

5.3.2. Predictions separated by material classes
The previous analysis shows that the XGBoost model is able to
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reliably predict the fatigue strength when the data is randomly split.
This is especially true when S-N curve parameters are included as fea-
tures; however, if a program-wise CV is used, the model performance
drops significantly. This indicates that the model strongly benefits from
test program-wise information contained in the training set when
randomly split.

In order to check the generalizability of the XGBoost model, the
training is therefore restricted to features that cannot be clearly assigned
to a single test program. By encoding categorical features such as ma-
terial class or weld seam condition, further influencing variables can be

included in the prediction. Instead of specific material designations, only
superordinate material classes (aluminum, steel, magnesium) are used.
This makes it possible to investigate whether the model can make
generalizable predictions even without direct knowledge of program
specific characteristics. It turns out that the prediction accuracy for a
random CV (RMSE = 0.31) is slightly worse but still close to that of the
ANN (RMSE = 0.28) (Fig. 10(a)). In contrast, the prediction accuracy
remains at the same level with a program-wise split as when using the
program-wise split with the S-N curve parameters. This shows that the
model can identify generalizable relationships, but only within the
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programs, not across them.

Having a closer look on the materials in Fig. 10(a), one observes
differences in the prediction accuracy for the respective materials. The
specimens made of steel show a greater scatter of the predictions than
the specimens with aluminum or magnesium as the base material.
Additionally, the SHAP analysis in Fig. 10(b) shows a high influence of
the base material on the fatigue life prediction. Feature values are not
assigned in the SHAP beeswarm plot because the encoded categorical
features do not represent actual values what results in grey points;
however, also the weld condition (as-welded or stress relieved) has an
impact on the XGBoost prediction while the post treatment (as-welded
or ground flush) and the specimen type (tube-tube or tube-flange) do not
play a role for the prediction.

5.3.3. Predictions without information about material and stress-life curve
parameters
The analysis of the base material's influence has shown that it

significantly affects fatigue strength prediction—comparable to the
impact of the S-N curve parameters. While the S-N curve parameters can
be directly attributed to individual test programs, the distribution of
material classes spans multiple programs, offering broader generaliza-
tion potential; however, this raises the question of whether such cate-
gorical features are essential at all. Both the SEC and ANN models
achieve accurate predictions without relying on categorical inputs like
material class. Consequently, the investigation of the XGBoost-based
approach is extended to include predictions based solely on stress-
related features, in order to assess the model’s performance without
categorical dependencies.

The prediction accuracy decreases slightly, while comparing Fig. 11
(a) with Fig. 10(a) and Fig. 9(b), for this feature constellation, but is still
within the SEC range; however, it is noticeable that there are more
outliers, some of which deviate significantly from the true value. The
SHAP analysis shows that only four features actually contribute signif-
icantly to the model prediction—the shear stress, the normal stress, the
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phase shift and the weld seam condition. It is striking that the normal
stress values cannot longer be assigned so clearly to the level of the
SHAP values. Medium normal stresses are also associated with high
SHAP values. In contrast, the influence of the shear stress and the phase
shift on the model prediction remains almost unchanged.

5.3.4. Model agnostic interpretation

The differentiated analysis of the features has shown that certain
parameters—such as the base material or specific S-N curve character-
istics—can significantly influence the model's predictions. Nevertheless,
the principal stress directions and their phase shift remain the most
decisive factors in predicting fatigue life. As demonstrated with the ANN
and implemented in the SEC approach, the semi-elliptical relationship
between the principal stress components forms the basis for reliable
fatigue life predictions. The partial dependence plot in Fig. 12 shows the
influence of the stress directions on the fatigue life prediction for the
XGBoost model trained on the stress-related features and the S-N curve
parameter. For the comparison with the ANN the program-wise CV is
chosen. The same semi-elliptical relationship between the stress com-
ponents can also be found for the XGBoost model; however, it is
noticeable that there are local deviations and the curves are less smooth.
This observation is typical for tree-based models such as XGBoost. Due to
the binary division of the feature space during training, discrete decision
thresholds arise, which appear in the PDPs as abrupt jumps or plateaus.
These locally sharp transitions can be an indication of limited general-
izability in data-poor regions, as has been shown for the program-wise
CV.

5.4. Comparison of results

Despite the different approaches, the fatigue life prediction using
XGBoost also shows a good estimation of the fatigue strength as long as
the training data domain covers the test splits. In case the test split is not
covered by the training data domain, the poor extrapolation ability of
the ensemble tree method becomes obvious. Since the XGBoost algo-
rithm relies on stochastical data splits no physical relationships are

500
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learned. The difference is clearly shown by the comparison of the CV
routines; the random split in 14 folds works much better than the test
program wise splits. This can also be seen after features that can be
directly associated with specific programs have been removed and
partly replaced by program-spanning features. This indicates that the
fatigue strength of the welds is strongly dependent on the respective test
program, e.g., due to specific load types, test setups, geometries, etc.,
which cannot be adequately represented by general features; however,
inside the training data domain the XGBoost model works well and
performs similarly as the ANN. Fig. 13 directly compares the prediction
accuracies using identical feature sets, including S-N curve parameters,
showing the results of the 14-fold cross-validation with random splits for
the XGBoost model and a program-by-program split for the ANN, whose
performance is largely unaffected by the choice of data splitting
strategy.

A comparison of the PDPs of ANN and XGBoost shows that a more
constant relationship between the stress directions and the fatigue
strength is learnt using ANN. With the XGBoost-model, it can be seen
that the semi-elliptical relationship is only learnt selectively, particu-
larly in the data-poor range. This indicates that more data is required for
the XGBoost-model, which depicts more test programs, if the predictions
are to be made for new test programs; however, if the database is diverse
enough, the XGBoost-model works excellently, as has been shown in the
CV with random split.

6. Discussion

The comparison of the extended classical approach with the SEC and
the ML based fatigue life predictions shows that the ML based prediction
has great potential for fatigue strength assessment of non-proportionally
loaded welds. The complexity of the interaction of the different char-
acteristics makes the usage of ML methods for this type of prediction
particularly interesting, as they are generally better able to map non-
linear and high-dimensional relationships; however, the comparison
between ANN and XGBoost shows that different ML algorithms have
different characteristics with regard to the required features and
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generalizability. While the prediction of the ANN is independent of the
type of data handling of the CV, the XGBoost model achieves high ac-
curacy with random data splits and not with test program-wise data
splits. This shows that the ANN learns the semi-elliptical relationship of
the load parameters more independently of the data, which goes hand in
hand with good generalizability to test programs not included in the
training. The PDPs also show that the learned curves from the ANN are
smoother and more stable than them of the XGBoost model. With the
XGBoost models that were not trained on S-N curve parameters, it was
shown that ML-based predictions are possible with satisfactory accuracy
even without information about the associated S-N curves. It was shown
that the greatest challenge lies in mapping more general influencing
variables in the feature space of the models. Encoding categorical fea-
tures, such as the weld condition and the base material, has a positive
influence on the prediction. Other more general features such as the
local weld geometry could further improve the prediction; however, any
interpretation of the stress levels is based on nominal stresses, neglecting
any stress rising effect of the weld toe or root notch. Considering stress
gradient effects and thus including any geometric stress rising effects
could lead to different findings. Moreover, there has been no evaluation
of non-proportional loadings beyond phase shifts, dominant stress
components, or multiaxial loading including stress components parallel
to the weld. Although multiaxial loading with stresses parallel to the
weld has been investigated in Bauer et al. [5], showing no difference
between the assessment of different stress components. Moreover, the
data including phase shifts lower than 90° is limited to very few test
programs based on different materials. The derived effect of a 45° phase
shift might therefore be coincidental. All findings are based on statistical
correlations within the presented dataset. The generalizability of the
results should be further examined as more data becomes available.

7. Conclusions

The comparison between the super ellipse criterion (SEC), an artifi-
cial neural network (ANN), and an extreme gradient boosting (XGBoost)
machine learning (ML)model has confirmed that the ML-based models
enable reliable prediction of fatigue life even with a limited database;
however, there are differences between the ML methods due to the

11

training algorithms. The following conclusions can be drawn from the
comparison between the machine learning methods, their model-
agnostic and model-specific interpretations, and the SEC approach:

Overall, the ANN demonstrates superior performance, slightly out-
performing the SEC in accuracy and the XGBoost model in terms of
stability and generalizability across the available dataset.

For the XGBoost model, the amount of data is too small to generalize
to completely unknown test programs. This is shown by less accurate
predictions when the 14-fold Cross Validation (CV) is program-wise
and also by discontinuities in the Partial Dependence Plot (PDP).

e The XGBoost model provides very accurate predictions when trained
on random data splits, where features that are not directly related to
a test program, such as the base material or the post-treatment, can
be used instead of the S-N curve parameters.

The Shapley Additive Explanations (SHAP) analyses have shown that
the normal stress and the shear stress have the greatest overall in-
fluence on the prediction, followed by the phase shift. This aligns
with the findings derived from the PDP.

e When using categorical features such as the base material and the
weld condition, these contribute significantly to the prediction with
the XGBoost model.

With the ANN, reliable predictions can be made regardless of the
handling of the data for the CV, as the super-elliptical relationship of
the stress components is learnt, which is reflected in smooth curves
in the PDPs.

CRediT authorship contribution statement

Marten Beiler: Writing — original draft, Visualization, Methodology,
Investigation, Data curation. Niklas Michael Bauer: Writing — original
draft, Visualization, Validation, Software, Resources, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization. Jorg
Baumgartner: Writing - review & editing, Supervision, Project
administration, Funding acquisition. Moritz Braun: Writing — review &
editing, Supervision, Project administration, Methodology, Funding
acquisition, Conceptualization.



M. Beiler et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

The work was performed within the research project SMATRA —
“Verbesserte Bewertung der Schwingfestigkeit geschweiter maritimer
Tragstrukturen unter Anwendung lokaler Nachweiskonzepte” funded by
the German Federal Ministry for Economic Affairs and Energy (project
numbers 03SX559B and 03SX559C).

Data availability

Data will be made available on request.

References

[1]

[2

—

[3]

[4

=

[5]

[6

=

[7]

[8

[}

[9

—

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Pedersen MM. Multiaxial fatigue assessment of welded joints using the notch stress
approach. Int J Fatigue 2016;83:269-79. https://doi.org/10.1016/j.
ijfatigue.2015.10.021.

Sonsino CM. Multiaxial fatigue of welded joints under in-phase and out-of-phase
local strains and stresses. Int J Fatigue 1995;17:55-70. https://doi.org/10.1016/
0142-1123(95)93051-3.

Nakamura H, Takanashi M, Itoh T, Wu M, Shimizu Y. Fatigue crack initiation and
growth behavior of Ti-6A1-4V under non-proportional multiaxial loading. Int J
Fatigue 2011;33:842-8. https://doi.org/10.1016/j.ijfatigue.2010.12.013.

Plank R, Kuhn G. Fatigue crack propagation under non-proportional mixed mode
loading. Eng Fract Mech 1999;62:203-29. https://doi.org/10.1016/50013-7944
(98)00097-6.

Bauer NM, Baumgartner J, Fass M. Fatigue life evaluation of welded joints under
multiaxial loading for different stress concepts using an extended Gough-Pollard
criterion. Weld World 2024. https://doi.org/10.1007/540194-024-01716-6.
Béackstrom M, Marquis G. A review of multiaxial fatigue of weldments:
experimental results, design code and critical plane approaches. Fatigue Fract Eng
M 2001;24:279-91. https://doi.org/10.1046/j.1460-2695.2001.00284.x.

R. Archer, Fatigue of a welded steel attachment under combined direct stress and
shear stress. International conference of fatigue of welded constructions, no. paper;
1987.

Hobbacher AF, Baumgartner J. Recommendations for Fatigue Design of Welded
Joints and Components. 3rd ed. Cham, Switzerland: Springer International
Publishing Switzerland; 2024.

prEN 1993-1-9 — Eurocode 3: Design of Steel Structures — Part 1-9: Fatigue SC3
N3405 (unpublished); 2022.

DNV-RP-C203: Recommended practice for Fatigue Design of offshore steel
structures. Hgvik, Norway; 2024.

Analytical Strength Assessment of Components: FKM Guideline. VDMA, Frankfurt/
Main; 2012.

Sonsino CM. Multiaxial fatigue life response depending on proportionality grade
between normal and shear strains/stresses and material ductility. Int J Fatigue
2020;135. https://doi.org/10.1016/j.ijfatigue.2019.105468.

Bauer NM, Baumgartner J. Multiaxial fatigue life calculation of welded joints made
of ductile materials. Weld World 2025. https://doi.org/10.1007/s40194-025-
02080-9.

Wachter RWM, Fallgren C, Beier H-T, Obermayr M, Rennert R, Vormwald M, et al.
Multiaxial stresses in the FKM guideline - Status quo and how things could be
improved. 14. International Conference on Multiaxial Fatigue and Fracture 2025.
2025.

L'Heureux A, Grolinger K, Elyamany HF, Capretz MAM. Machine learning with big
data: challenges and approaches. IEEE Access 2017;5:7776-97. https://doi.org/
10.1109/access.2017.2696365.

Murdock RJ, Kauwe SK, Wang A-Y-T, Sparks TD. Is Domain Knowledge Necessary
for Machine Learning Materials Properties? Integrating Mater Manuf Innovation
2020;9:221-7. https://doi.org/10.1007/540192-020-00179-z.

Barbiero P, Squillero G, Tonda A. Modeling generalization in machine learning: A
methodological and computational study. arXiv preprint arXiv:2006.15680; 2020.
Yang JY, Kang GZ, Liu YJ, Kan QH. A novel method of multiaxial fatigue life
prediction based on deep learning. Int J Fatigue 2021;151:106356. https://doi.
org/10.1016/j.ijfatigue.2021.106356.

12

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

International Journal of Fatigue 206 (2026) 109459

Kalayci CB, Karagoz S, Karakas O. Soft computing methods for fatigue life
estimation: a review of the current state and future trends. Fatigue Fract Eng M
2020;43:2763-85. https://doi.org/10.1111/ffe.13343.

Awd MMM. Machine Learning Algorithm for Fatigue Fields in Additive
Manufacturing. Wiesbaden: Springer Vieweg; 2022.

Braun M, Kellner L. Comparison of machine learning and stress concentration
factors-based fatigue failure prediction in small-scale butt-welded joints. Fatigue
Fract Eng M 2022;45:3403-17. https://doi.org/10.1111/ffe.13800.

Schubnell J, Aydogan O, Jung M. Determination of stress concentration factors of
welded joints from 3D-surface scans by artificial neural networks. Procedia Struct
Integrity 2024;57:112-20. https://doi.org/10.1016/j.prostr.2024.03.014.
Schubnell J, Fliegener S, Rosenberger J, Feth S, Braun M, Beiler M, et al. Data-
driven fatigue assessment of welded steel joints based on transfer learning. Weld
World 2025;69:2223-38. https://doi.org/10.1007/540194-025-01967-x.

Zhang P, Tang K, Wang A, Wu H, Zhong Z. Neural network integrated with
symbolic regression for multiaxial fatigue life prediction. Int J Fatigue 2024;188.
https://doi.org/10.1016/j.ijfatigue.2024.108535.

Nagode M, Papuga J, Oman S. Application of machine learning models for
estimating the material parameters for multiaxial fatigue strength calculation.
Fatigue Fract Eng M 2023;46:4142-60. https://doi.org/10.1111/ffe.14128.

Choi D-K. Data-Driven Materials Modeling with XGBoost Algorithm and Statistical
Inference Analysis for Prediction of Fatigue Strength of Steels. Int J Precis Eng
Manuf 2019;20:129-38. https://doi.org/10.1007/512541-019-00048-6.

Beiler M, Tanvir M, Braun M. Weld Surface Geometry's Impact on Generalizability
of Machine Learning Models for Fatigue Life Prediction. International Institute of
Welding ITW-Doc. XIII-3071-2024; 2024.

Wang X, Braun M. Explainable machine learning-based fatigue assessment of 316L
stainless steel fabricated by laser-powder bed fusion. Int J Fatigue 2025;190.
https://doi.org/10.1016/j.ijfatigue.2024.108588.

Wang X, Braun M, Schubnell J. Ermiidungs- und Kerbwirkungsbewertung additiv
gefertigter AISI 316L-Proben mittels physikalisch informierten maschinellen
Lernverfahren. DVM-Arbeitskreis Arbeitskreis Additiv gefertigte Bauteile und
Strukturen - Tagung 2025, Berlin, Germany; 2025.

Kraus MA, Bartsch H. Discovery of fatigue strength models via feature engineering
and automated eXplainable machine learning applied to the welded transverse
stiffener. Int J Fatigue 2026;203. https://doi.org/10.1016/j.
ijfatigue.2025.109324.

Eibl M. Berechnung der Schwingfestigkeit laserstrahlgeschweiter Feinbleche mit
lokalen Konzepten [PhD]. Darmstadt, Germany: Technische Universitdt Darmstadt;
2003.

Exel N. Schwingfestigkeit laserstrahlgeschweifiter Magnesiumknetlegierungen
unter mehrachsigen proportionalen und nichtproportionalen Beanspruchungen.
Shaker 2014.

Bolchoun A. Eine Methode zur Festigkeitsbeurteilung von laserstrahlgeschweifiten
Magnesium-Verbindungen unter mehrachsigen Beanspruchungen mit konstanten
und variablen Amplituden. Fraunhofer Verlag 2018.

Bertini L, Cera A, Frendo F. Experimental investigation of the fatigue resistance of
pipe-to-plate welded connections under bending, torsion and mixed mode loading.
Int J Fatigue 2014;68:178-85. https://doi.org/10.1016/j.ijfatigue.2014.05.005.
Frendo F, Bertini L. Fatigue resistance of pipe-to-plate welded joint under in-phase
and out-of-phase combined bending and torsion. Int J Fatigue 2015;79:46-53.
https://doi.org/10.1016/j.ijfatigue.2015.04.020.

Razmjoo G. Fatigue of load-carrying fillet welded joints under multiaxial loading.
In: 5 Th International Conference on Biaxial/Multiaxial Fatigue & Fracture; 1997.
p. 53-70.

Sonsino C. Schwingfestigkeit von geschweifiten Komponenten unter komplexen
elasto-plastischen, mehrachsigen Verformungen. 1018-5593; 1997.

Sorsino C, Kiippers M, Gédth N, Maddox SJ, Razmjoo GR. Fatigue behaviour of
welded high-strength components under combined multiaxial variable amplitude
loading; 1999.

Storzel K, Wiebesiek J, Bruder T, Hanselka H. Betriebsfeste Bemessung von
mehrachsig belasteten Laserstrahlschweifiverbindungen aus Stahlfeinblechen des
Karosseriebaus. LBF-Bericht Nr. FB-235, Darmstadt; 2008.

Wiebesiek J. Festigkeitshypothesen zum Schwingfestigkeitsverhalten von
diinnwandigen LaserstrahlschweiBverbindungen aus Aluminium unter
mehrachsigen Beanspruchungen mit konstanten und veranderlichen
Hauptspannungsrichtungen. Shaker 2012.

Winther NB, Jensen MA, Andreasen JH, Schjgdt-Thomsen J, Larsen ML. Effect of
non-proportional stress states caused by varying phase shifts on the fatigue life of
welded joints. Int J Fatigue 2024;185. https://doi.org/10.1016/j.
ijfatigue.2024.108351.

Witt M. Schwingfestigkeit von Schweiverbindungen bei zusammengesetzter
Betriebsbeanspruchung [Dissertation]. Technical University Clausthal 2000.
Friedman JH. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29; 2001: 1189-1232, 1144.

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local
explanations to global understanding with explainable Al for trees. Nat Mach Intell
2020;2:56-67. https://doi.org/10.1038/542256-019-0138-9.


https://doi.org/10.1016/j.ijfatigue.2015.10.021
https://doi.org/10.1016/j.ijfatigue.2015.10.021
https://doi.org/10.1016/0142-1123(95)93051-3
https://doi.org/10.1016/0142-1123(95)93051-3
https://doi.org/10.1016/j.ijfatigue.2010.12.013
https://doi.org/10.1016/s0013-7944(98)00097-6
https://doi.org/10.1016/s0013-7944(98)00097-6
https://doi.org/10.1007/s40194-024-01716-6
https://doi.org/10.1046/j.1460-2695.2001.00284.x
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0040
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0040
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0040
https://doi.org/10.1016/j.ijfatigue.2019.105468
https://doi.org/10.1007/s40194-025-02080-9
https://doi.org/10.1007/s40194-025-02080-9
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0070
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0070
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0070
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0070
https://doi.org/10.1109/access.2017.2696365
https://doi.org/10.1109/access.2017.2696365
https://doi.org/10.1007/s40192-020-00179-z
https://doi.org/10.1016/j.ijfatigue.2021.106356
https://doi.org/10.1016/j.ijfatigue.2021.106356
https://doi.org/10.1111/ffe.13343
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0100
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0100
https://doi.org/10.1111/ffe.13800
https://doi.org/10.1016/j.prostr.2024.03.014
https://doi.org/10.1007/s40194-025-01967-x
https://doi.org/10.1016/j.ijfatigue.2024.108535
https://doi.org/10.1111/ffe.14128
https://doi.org/10.1007/s12541-019-00048-6
https://doi.org/10.1016/j.ijfatigue.2024.108588
https://doi.org/10.1016/j.ijfatigue.2025.109324
https://doi.org/10.1016/j.ijfatigue.2025.109324
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0155
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0155
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0155
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0160
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0160
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0160
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0165
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0165
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0165
https://doi.org/10.1016/j.ijfatigue.2014.05.005
https://doi.org/10.1016/j.ijfatigue.2015.04.020
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0180
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0180
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0180
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0200
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0200
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0200
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0200
https://doi.org/10.1016/j.ijfatigue.2024.108351
https://doi.org/10.1016/j.ijfatigue.2024.108351
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0210
http://refhub.elsevier.com/S0142-1123(25)00656-5/h0210
https://doi.org/10.1038/s42256-019-0138-9

	Analytical and machine learning-based fatigue life prediction of welded joints under multiaxial loading
	1 Introduction
	2 Multiaxial fatigue of welded joints
	3 Analytical and machine learning-based fatigue life predictions for multiaxial fatigue tests
	3.1 Super ellipse criterion
	3.2 Machine learning based methods
	3.2.1 Artificial neural network
	3.2.2 Extreme gradient boosting


	4 Database on multiaxial fatigue tests of welded joints
	5 Results of analytical and machine learning-based fatigue assessments of multiaxial fatigue tests of welded joints
	5.1 Super ellipse criterion
	5.2 Artificial neural network
	5.2.1 Prediction results
	5.2.2 Dependence plots

	5.3 Extreme gradient boosting
	5.3.1 Predictions with stress-life curve parameters
	5.3.2 Predictions separated by material classes
	5.3.3 Predictions without information about material and stress-life curve parameters
	5.3.4 Model agnostic interpretation

	5.4 Comparison of results

	6 Discussion
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


