elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Inversion of residual motion error in Airborne Single and Repeat Pass interferometry under the presence of squint and large topography variations

Andres, Christian und Scheiber, Rolf (2006) Inversion of residual motion error in Airborne Single and Repeat Pass interferometry under the presence of squint and large topography variations. In: Proceedings of European Conference on Synthetic Aperture Radar (EUSAR), Seite 4. VDE. European Conference on Synthetic Aperture Radar (EUSAR), 2006-05-16 - 2006-05-18, Dresden, Germany.

[img]
Vorschau
PDF
2MB

Kurzfassung

The potential and necessity of the estimation and compensation of motion errors beyond the accuracy of up-to-date navigation systems has been demonstrated and proved in several studies during the last years. This paper presents an improved method to invert the estimated residual phase error to navigation errors of the airplane using an accurate model of the airplane and scene geometry in Single and Repeat Pass SAR mode. The performance of current estimation algorithms is limited because of the inseperability between topography induced and residual motion errors. The proposed method tries to extract the residual phase caused by motion errors by introducing a model of the imaging geometry including the scene topography using a backgeocoded elevation model. This leads, in cooperation with the precise topography and aperture dependend motion compensation, to precise interferograms and finally to a refined accuracy of the derived elevation model. The method has been extensively tested and finally implemented into E-SAR’s processing chain. It is fully operational for single pass interferometric processing by first estimating the residual motion error, converting the residual motion error into residual platform motion and then processing the second interferometric channel by comprising not only platform but also residual platform motion. In order to reach the required accuracy, the second channel must be processed iteratively no more than 2-3 times. The quality improvement caused by the algorithm is investigated by evaluating the accuracy of the resulting digital elevation models on a dataset with more than 1000 meters of height variation.

elib-URL des Eintrags:https://elib.dlr.de/22264/
Dokumentart:Konferenzbeitrag (Vortrag, Paper)
Titel:Inversion of residual motion error in Airborne Single and Repeat Pass interferometry under the presence of squint and large topography variations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Andres, ChristianNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Scheiber, RolfNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 März 2006
Erschienen in:Proceedings of European Conference on Synthetic Aperture Radar (EUSAR)
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seite 4
Verlag:VDE
Status:veröffentlicht
Stichwörter:SAR interferometry, residual motion errors, squint, topography
Veranstaltungstitel:European Conference on Synthetic Aperture Radar (EUSAR)
Veranstaltungsort:Dresden, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 Mai 2006
Veranstaltungsende:18 Mai 2006
Veranstalter :VDE
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W EO - Erdbeobachtung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):W - Vorhaben Flugzeug-SAR (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Andres, Christian
Hinterlegt am:23 Mai 2006
Letzte Änderung:24 Apr 2024 19:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.