Bueno Rodriguez, Angel und Sattler, Felix und Carrillo Perez, Borja Jesus und Pérez Prada, Maximilian und Alameddine, Jean-Marco und Stephan, Maurice und Barnes, Sarah (2025) Pillar embedding visualization for muon-scattering tomography. Journal of Applied Physics, 138 (14). American Institute of Physics (AIP). doi: 10.1063/5.0288257. ISSN 0021-8979.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://dx.doi.org/10.1063/5.0288257
Kurzfassung
Muon-scattering tomography (MST) utilizes the deflection of cosmic-ray muons to non-invasively reconstruct the three-dimensional internal structure and material composition of concealed objects, such as those in maritime cargo. Yet, the high dimensionality of reconstructed MST volumes and sparsity of muon hits hinder reliable material discrimination and structural interpretation. We present an unsupervised workflow that visualizes learned data embeddings for material identification. The pipeline couples the Blender-to-Geant4 simulation framework, enabling the rapid prototyping of complex 3D scenes with a standard and widely adopted MST reconstruction algorithm, the Point of Closest Approach (PoCA), to reconstruct the scenes. A structured muon-data sampling grid, termed pillars, feeds an exploratory embedding technique that reveals discriminative material patterns in the reconstructed outputs. Experimental results demonstrate that the proposed approach mitigates key machine-learning challenges in MST; at the same time, they reveal the intrinsic limitations of PoCA estimates for mainstream material classification with machine-learning approaches, and we introduce corrections that enhance visualization and enable data-driven analysis in practical MST deployments.
| elib-URL des Eintrags: | https://elib.dlr.de/222480/ | ||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
| Titel: | Pillar embedding visualization for muon-scattering tomography | ||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||
| Datum: | 10 Oktober 2025 | ||||||||||||||||||||||||||||||||
| Erschienen in: | Journal of Applied Physics | ||||||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
| Band: | 138 | ||||||||||||||||||||||||||||||||
| DOI: | 10.1063/5.0288257 | ||||||||||||||||||||||||||||||||
| Verlag: | American Institute of Physics (AIP) | ||||||||||||||||||||||||||||||||
| ISSN: | 0021-8979 | ||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
| Stichwörter: | Electrostatics, Machine learning, Cosmic rays, 3D printing, Nondestructive testing techniques, Tomography, Functions and functionals, Computer simulation, Probability theory, Leptons | ||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||||||||||
| Standort: | Bremerhaven | ||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien | ||||||||||||||||||||||||||||||||
| Hinterlegt von: | Sattler, Felix | ||||||||||||||||||||||||||||||||
| Hinterlegt am: | 30 Jan 2026 09:24 | ||||||||||||||||||||||||||||||||
| Letzte Änderung: | 02 Feb 2026 12:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags