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ABSTRACT

Muon-scattering tomography (MST) utilizes the deflection of cosmic-ray muons to non-invasively reconstruct the three-dimensional internal
structure and material composition of concealed objects, such as those in maritime cargo. Yet, the high dimensionality of reconstructed MST
volumes and sparsity of muon hits hinder reliable material discrimination and structural interpretation. We present an unsupervised workflow
that visualizes learned data embeddings for material identification. The pipeline couples the Blender-to-Geant4 simulation framework, enabling
the rapid prototyping of complex 3D scenes with a standard and widely adopted MST reconstruction algorithm, the Point of Closest Approach
(PoCA), to reconstruct the scenes. A structured muon-data sampling grid, termed pillars, feeds an exploratory embedding technique that
reveals discriminative material patterns in the reconstructed outputs. Experimental results demonstrate that the proposed approach mitigates
key machine-learning challenges in MST; at the same time, they reveal the intrinsic limitations of PoCA estimates for mainstream material
classification with machine-learning approaches, and we introduce corrections that enhance visualization and enable data-driven analysis in

practical MST deployments.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0288257

I. INTRODUCTION

Muon-scattering tomography (MST) images the internal
structure and material composition of a concealed Volume of
Interest (VOI) by tracking naturally occurring cosmic-ray
muons.”” As illustrated in Fig. 1, each muon is measured twice:
once in the upper detector plane before it enters the VOI and once
in the lower detector plane after it exits. These two position and
direction measurements, or muon hits, define the incoming and
outgoing trajectory vectors, from which the single-scatter deflection
angle 0 can be estimated. Collecting many such muon hits over the
exposure time yields a hit list that can be transformed into a volu-
metric image using a tomographic reconstruction method, such as
the Point of Closest Approach (PoCA)’ or Angle Statistics
Reconstruction (ASR)* algorithms. The common working principle
of these algorithms is to back-project the two trajectory vectors
into the VOI and assign scattering scores based on the deflection
angle 6. In PoCA, the score is assigned to the single voxel where

the projected paths come closest.” In ASR, the #-based score is dis-
tributed across every voxel intersected by the straight-line track
pair that meets the “traversed by both tracks” criterion, without
assuming a single scattering point.” Repeating this procedure for
every muon populates a 3D grid with per-voxel scattering scores.
Finally, aggregating the scores across all muons produces a three-
dimensional scattering density map whose voxel intensities corre-
late with the local material density and atomic number. These 3D
scattering density maps can be used in a wide range of non-
destructive MST applications, from contraband detection in cargo
and border security,” through civil-engineering and infrastructure
monitoring,” to industrial non-destructive testing’ and nuclear-fuel
cask surveillance.” In practice, most MST applications deduce mate-
rial properties solely from the geometric intersection of recon-
structed tracks, leaving the recovered information inherently
incomplete.” Precise muon-momentum measurements would
tighten the link between scattering angle and density. Yet, existing
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FIG. 1. Visualization of a canonical muon-scattering setup: Muons passing
through an object scatter due to Coulomb interactions with atomic nuclei. Muon
tomography algorithms use muon hits to estimate muon pathways and image a
VOl as a 3D scattering density map.

hardware detector solutions, whether as meter-scale weak magnets
or passive scatterers, are too bulky for field measurement setups
and introduce large, irreducible uncertainties from single-muon
statistics.'

MST measurement campaigns typically yield small, noisy, and
weakly labeled data sets, posing significant challenges for data-
driven analyses. This scarcity and noise stem primarily from the
limitations of precise momentum measurements, which, although
this could in principle be addressed by extending exposure times in
MST campaigns to collect more muons, are constrained by the
inherent low natural rate of cosmic-ray muon flux, requiring
extended exposure times (often hours or days) to accumulate suffi-
cient statistics for reliable imaging, making real-world data collec-
tion time-intensive and resource-heavy. Additionally, the relatively
short operational history of MST, spanning only a few decades
since its inception, has resulted in a limited archive of publicly
available data sets. The weak labeling arises because concealed
objects in real-world scenarios often lack precise ground truth
annotations, relying on expert interpretation or additional invasive
verification methods that are rarely available. To overcome these
constraints, high-fidelity synthetic data can be simulated to closely
mirror real conditions, carry perfect ground truth, and explore
corner-case geometries that would be infeasible to measure in the
field. Typically, MST setups are simulated using Geant4, a sophisti-
cated particle-physics simulation software.'” Yet, simulating these
scenes at scale requires hand-coding and recompiling the simula-
tion for each design iteration, a bottleneck that sharply limits
throughput. The recently released Blender-to-Geant4 (B2G4) work-
flow'" bridges this gap: users design scenes interactively in Blender,
an open-source 3D computer software program,'” and export them
directly into Geant4, thereby eliminating the need for hand-coded
geometry and recompilation cycles.

Although every material leaves characteristic scattering signa-
tures, classifying them, whether on real or simulated data, remains
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a challenge. The voxel statistics are inherently noisy and sparsely
sampled; moreover, each value represents an integral along the
unknown muon path, intertwining object geometry, material com-
position, and track length in a nonlinear manner. These factors
blur class boundaries and feed downstream machine-learning
models ambiguous, occasionally contradictory data samples, limit-
ing their reliability. In this work, we present a structured methodol-
ogy for data sampling and feature extraction explicitly designed for
material identification. We first use B2G4 to create two large, fully
synthetic MST data sets that span a wide range of shapes and mate-
rial densities. From the recorded hit pairs, we recover the incident
and exiting muon directions and reconstruct a 3D scattering
density map of the VOI. We adopt PoCA as the reconstruction
algorithm given that it stands as the mainstream method in MST:
its closed-form simplicity, linear scaling with track count, and
extensive experimental validation make it an ideal baseline.

Next, each 3D scattering density map is decomposed into a
grid of vertical pillars, or 3D columns, aligned along the +Z axis in
the coordinate space, approximating the predominant muon flight
direction. For every pillar, we compute a 12-element feature vector
that blends simple statistics with spectral measures to capture local
variations in scattering power and, by extension, material density.
To suppress PoCA artifacts, we test several pre-filters, including
median kernels and lightweight 3D convolutions, that denoise the
volume before pillar extraction. The resulting feature cloud is
embedded with t-Stochastic Neighbor Embedding (t-SNE),"” yield-
ing a two-dimensional map in which pillars from different materi-
als cluster according to their scattering signature. The proposed
end-to-end workflow, from PoCA reconstruction to t-SNE projec-
tion, serves as a diagnostic lens on MST data, revealing where
PoCA’s single-scattering assumption breaks down, how energy-
dependent scattering biases affect cluster structure, and where
materials of similar density are prone to confusing machine-
learning models. Hence, the workflow offers a robust data pipeline
for coupling large, annotated MST data sets with a tool to sample,
visualize and anticipate the challenges that machine-learning algo-
rithms may encounter in MST deployments, where measurements
are typically conditioned by a broad spectrum of physical phenom-
ena affecting the reconstruction and materials of density are prone
to be confused."*

Il. RELATED WORK

Machine learning has been explored in MST to analyze muon
data from Geant4 simulations,”'” with feature discriminators to
detect waste drum materials,'™'” classification of measured data,'®
nuclear threat detection'’ or as the core component in muon
imaging,”’">> among others. Despite their state-of-the-art perfor-
mance, these approaches employ small synthetic data sets that lack
detailed 3D geometries. The scalable simulation of detailed syn-
thetic 3D data for machine-learning applications in MST is para-
mount for developing models that bridge the gap between real and
simulated scenarios. However, the simulation of MST data in
Geant4 remains a largely hand-crafted process,”* requiring manual
coding of solids, placements, and materials in C++, with geometry
errors only detected at compilation time, and no interactive
modeler provided. Geometry Description Markup Language
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FIG. 2. Simulation setup rendered using the B2G4 framework, with the VOI in blue background. (a) MonkeyContainer: a VOI with a single monkey head object inside,
made of a single material. (b) 4ShapesContainer: a VOI containing four distinct geometric shapes (cylinder, sphere, monkey head, and a cube). All the shapes in the
4ShapesContainer are made of the same material. The dimensions of the VOI are h,, : 3 (width), h; : 6 (length), and h; : 2.4 (height), corresponding to those of a maritime

cargo container.

(GDML)*>™’ offers a surrogate through XML-based descriptions,
yet it still involves verbose text editing without live visual feedback.
Blender-to-Geant4 (B2G4) addresses these limitations by coupling
the open-source 3D modeler Blender with Geant4 geometrical hier-
archies through a custom data format for 3D geometry exchange'’
and interactive scene design for runtime simulations. Yet, a work-
flow that couples scalable 3D scene creation (e.g., via B2G4) with
machine-learning pipelines, allowing algorithms to be challenged
across the full complexity spectrum of modern MST deployments,
remains to be explored.

Illl. FRAMEWORK DESCRIPTION

This section introduces the use of pillars®® as a sampling tech-
nique in muon tomography data to examine material density distri-
bution within a scanned volume. These pillar structures traverse
the reconstructed VOI while extracting features, thus allowing the
3D scattering density maps to be divided into manageable seg-
ments, namely, feature descriptors, for further analysis. To explore
the separability of materials, we embed these feature descriptors
using t-SNE. The 2D embedding produced by t-SNE reveals clus-
ters driven purely by muon-scattering behavior, providing an intui-
tive map of where different densities lie and a diagnostic view of
the challenges machine-learning models face in real measurements.

A. Data set generation

The data set generation follows the B2G4 end-to-end data
pipeline, ranging from the specification of the scene in B2G4, to
the simulation phase, and the subsequent muon tomography
reconstruction. Each of these data set generation steps are as
follows:

Scene creation: Fig. 2 depicts the two primary data sets gener-
ated with the B2G4 framework, the MonkeyContainer, and the
4ShapesContainer. Each data set contains ten scenes, and each
scene contains a container with objects made of the specified mate-
rials. These materials are categorized into three groups: high-
density materials (Au, Pb, W), medium-density materials (Al, Fe,
Cu), and low-density materials (concrete, air, Si, water). The
dimensions of this container remain the same for all the scenes, in
both data sets. In meters, the dimensions are h,, :3 (width), h;:6
(length), and h,:2.4 (height), corresponding to those of standard
application of MST analysis in cargo containers. Given that our
interest lies in determining whether material densities can be iden-
tified from the reconstruction of 3D scattering density maps, the
composition of the container is initially set as a vacuum. In terms
of 3D geometries, the data sets are defined as follows:

1. MonkeyContainer [Fig. 2(a)]: Designed to test if materials can
be distinguished with a consistent shape. This data set features
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an empty container with a single monkey head (dimensions:
1.92m width, 1.2 m height, 1.38 m depth) centered inside. In
each of the 10 scenes, the monkey head is made of a different
material (high, medium, or low density).

2. 4ShapesContainer [Fig. 2(b)]: Aimed at evaluating whether
object shape influences material signatures. It includes four
diverse shapes in a container, symmetrically placed in quad-
rants: a sphere (0.41 m radius), cube (0.64 m sides), cylinder
(0.93 m height, 0.46 m radius), and scaled monkey head (1.74 m
depth, 0.794 m width, 0.918 m height). All shapes in a given
scene are made of the same material, with 10 scenes total
(varying materials). This setup mimics real-world variability in
object size and form to challenge the MST pipeline.

Following the data set specification setup, and once all of the
scenes are exported using B2G4,"" we proceed to the simulation of
cosmic-ray muons.

Simulation phase: The simulations were performed using
Geant4 version 11.1.2 and the Cosmic-Ray Shower Library (CRY)
version 1.7,” with standard CRY settings: muon energies ranging
from 1 MeV to 100 TeV and zenith angles from 0° to 90°. All the
scenes in both data sets were simulated with 5x10% muons gener-
ated over a 1 m? plane, corresponding to an equivalent exposure
time of 500 min under typical cosmic-ray muon flux conditions at
sea level, that is, ~10000muons/m?/min. Only muons are
retained: for every particle that intersects a detector plane, the
precise hit positions, directions, and particle energy are recorded.
The detector planes themselves are modeled as ideal sensors:
perfect efficiency, full geometric acceptance, zero edge effects, and
infinitesimal spatial resolution to avoid instrumental smearing that
could obscure muon-scattering physics and material signatures for
subsequent analysis.

Tomographic reconstruction: After generating and processing
the muon-hit lists, we reconstruct every scene using the PoCA algo-
rithm with a uniform voxel size of 5 cm. Finer voxels offer minimal
added insight, as smaller voxel sizes reduce muon hits, trading res-
olution for increased noise while quadratically increasing the com-
putational load. The PoCA algorithm determines the minimal
separation between the incident and exiting muon trajectories to
identify a single scattering point.” To do so, the PoCA algorithm
uses the positional and directional data of the muon’s path before
and after deflection to solve the parametric equations of straight
lines.” Once the scattering point is estimated, the scattering score is
assigned to the corresponding voxel. Then, to estimate the scatter-
ing angle @ for each voxel, the mean angle of all scatterings that
occurred in this voxel is chosen and angles below 0.01°
(0.174 mrad) are filtered out to exclude insignificant deflections
while ensuring focus on material-relevant events. Once the tomo-
graphic reconstructions for each data set are complete, a volumetric
array for each scene is produced, containing the estimated PoCA
points, that is, the 3D scattering density maps, for the pillar sam-
pling step.

B. Pillar sampling in MST

To facilitate material identification, we employ a strategy to
extract sparse feature vectors from the 3D scattering density maps
through a structured sampling process we term pillarization. This

ARTICLE pubs.aip.org/aip/jap
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FIG. 3. Schematic representation of the proposed pillar sampling (pillarization):
The sampling process yields multiple pillars (Py1, Pra, ..., Pat, Pa, ..., Pi)
aligned vertically in the X, Y, and Z axes. Here, j and k represent the total
number of grid divisions along the X and Y axes, respectively. We conduct grid
sampling across the VOI in the positive X and Y directions, and from each pillar
P.m, We extract a 12-dimensional feature vector along the positive +Z direction
for analysis.

method, inspired by 3D pillar-based discretization techniques
developed originally for aggregating multiscale features in real-time
object detection from point clouds in autonomous driving,” com-
puter vision applications,” and volumetric characterization,”’
divides the reconstructed volume into vertical pillars, that is,
columns of voxels sharing the same (x, y) muon-scattering footprint.
By aggregating statistics along the z axis, pillarization collapses these
vertical voxel stacks into compact feature vectors, respecting the pre-
dominantly downward paths of cosmic-ray muons while capturing
essential characteristics of the 3D imaged volume. Figure 3 provides
a schematic illustration of the proposed pillarization strategy. We
define a sampling grid spanning X, Y, and Z dimensions to fully
enclose the container boundaries, aligned with the VOI. The grid
resolution corresponds to one pillar per position cell in the ideal
detector, computed for each (+X, +Y) location in the positive direc-
tions of width and height, extending along the positive z-depth
(+2). Note that while pillars are aligned vertically along the +Z axis
to approximate the predominant downward muon flux, simulations
include muons from all incident angles (0°-90° zenith) using stan-
dard CRY settings; oblique muons contribute to the pillars they trav-
erse, ensuring the approach remains consistent with realistic MST
measurements. After the pillarization step, we obtain Py pillars.
Each pillar can then be treated as a discrete 1D spatial signal s[i]
along the z axis, thus enabling the extraction of 12 feature descrip-
tors. These features provide insights into the pillar density distribu-
tion and materials within the 3D reconstructed scattering density
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TABLE |. Features extracted from each pillar, treated as a discrete 1D spatial signal s[i] along the z axis.

Statistical features

Feature Definition Interpretation (per pillar)
Mean U, = %Z; sl Average signal value
Median Midpoint of sorted s[i] Signal midpoint; robustness against noise spikes

Standard deviation

Q3-Q1

Interquartile range

Skewness 1 RIEAN
;El( o )

Kurtosis 1 stil—u.) !
;Ei( o )

Maximum max (s[i])

Minimum (non-zero) min {s[i] | s[i] # 0}

O; = \/ﬁzi (5[1] _/15)2

Signal variability; measures dispersion

Central spread; ignores outliers
Pillar distribution asymmetry

Pillar distribution peakedness

Peak pillar value; identifies regions of high
reconstructed scattering density
Lowest non-zero pillar value; captures baseline
reconstructed scattering density

Complexity and spectral features

Feature Definition

Interpretation (per pillar)

Energy >;slil 2
Normalized entropy
Total intensity

Maximum Fourier amplitude

28l

maxy |7 (s)[k]|

~ o 2os P(5) g, (p(s)

Total signal power; quantifies intensity
Signal disorder; higher for varied profiles

Cumulative signal strength
Strongest Fourier component; reveals periodic patterns

maps. Let # be the pillar length, u, the mean, o, the standard devia-
tion, and p(s) the probability of amplitude level s, we group 12
feature descriptors as a combination of statistical and complexity/
spectral features, thus creating a feature vector. Table I lists all fea-
tures together with their mathematical definitions and a brief per-
pillar interpretation, which we define as follows:

(1) Statistical features: The selection of features here provides
insight into the muon-scattering distribution along the pillar
profile: mean, median, standard deviation, interquartile range,
skewness, kurtosis, the maximum and minimum (non-zero)
pillar values sampled from the reconstructed scattering
densities.

(2) Complexity and spectral features: These features offer insights
into the signal energy distribution of the 3D reconstructed
scattering density maps: energy, normalized entropy, total
intensity, and maximum Fourier amplitude.”’

Note that all features are computed independently per pillar
from the discrete 1D spatial signal s[i] (length n). The pillarization
strategy constructs vertical pillars aligned with the prevailing muon
flight direction. Once all reconstructed tracks are accumulated into
the 3D scattering-density map, the typical transverse displacement
of a muon is less than 5cm.”™ Consequently, each Pj column col-
lects the scattering contribution of essentially all muons traversing
it, so a pillar encodes the aggregated statistics of many paths rather
than a single track. This path integration yields a robust,
path-integrated estimate of local scattering power and makes pillars
a natural unit for reasoning about material density. Pillars

corresponding to empty regions exhibit (near-)zero deflection and
are excluded from the analysis to focus on meaningful data.

C. Embedding visualization

In machine learning, an embedding is a compact, low-
dimensional representation of high-dimensional data that preserves
key relationships. We employ embeddings as an essential tool for
interpreting reconstructed 3D scattering density maps in MST.
Specifically, after pillar sampling, we embed the 12-dimensional
feature vectors using t-distributed Stochastic Neighbor Embedding
(t-SNE)."” The t-SNE algorithm13 converts Euclidean distances
between pillar pairs into conditional probabilities representing pair-
wise affinities in the high-dimensional space, with the user-defined
perplexity parameter (per) controlling the effective neighborhood
size. A randomly initialized two-dimensional map is then iteratively
optimized to ensure its affinities, g; (computed using a heavy-tailed
Student’s ¢ distribution), closely match the high-dimensional affini-
ties pj. Formally, the algorithm minimizes the Kullback-Leibler
divergence as

KLIPIQI =37 pylog 2, 1)
i y

with P and Q representing the probability distributions in both the
high- and low-dimensional spaces, and p; and g; denoting the
pairwise similarities between data points. This asymmetric diver-
gence prioritizes the preservation of local structure and topology,
making t-SNE particularly effective for revealing cluster structure
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FIG. 4. t-SNE results with selected pillar samples for interpretation. (a) t-SNE visualization of the MonkeyContainer data set, where each point represents a pillar's 12D
feature vector; proximity indicates similar pillar features; clusters reflect discriminative material patterns, while tails indicate low-density or noisy regions. The numbers corre-
spond to selected pillar samples for visualization, and the colorbar represents material density, from blue (low density) to red (high density). (b) Numbered t-SNE samples
for tungsten (W), iron (Fe), aluminum (Al), concrete, silicon (Si), water, and air, with black lines indicating the position of sampled pillars in the 3D scattering density map.
Axes are labeled as X, Y, Z (dimensions: hy :3m, h:6m, h,:2.4m).
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in complex data sets. By projecting these embeddings into a low-
dimensional space, t-SNE captures hidden similarities among
pillars, facilitating visual inspection and material identification in
the reconstructed volume.

IV. RESULTS AND DISCUSSION
A. Single shape, multiple materials

Here, we analyze the MonkeyContainer data set, which fea-
tures a monkey head placed in the center of the container made of
one of the following materials: Au, Pb, W, concrete, Cu, Fe, Air, Al,
Si, or water. For each reconstructed scene, we extract the pillars and
run the t-SNE algorithm with the selected perplexity value of
per = 42 to balance the preservation of global and local data struc-
tures without excessive oversimplification. '’

Material identification: Fig. 4 summarizes the t-SNE analysis
for the MonkeyContainer data set. The black lines in Fig. 4(b) mark
the regions in the 3D scattering-density maps from which pillars
are sampled; the numeric labels in Fig. 4(a) correspond to those
sampled pillars. Cluster density reflects the consistency of sampling
across similar pillars, separation indicates the discriminability of
materials, and outliers often correspond to artifacts or low-
occupancy regions, such as those affected by high-energy muons or
sparse sampling. We observe that material densities are clearly sep-
arable in the embedding, thus indicating that PoOCA-based 3D scat-
tering density maps can effectively discriminate materials when
their scattering density (and underlying mass density) are suffi-
ciently different [e.g., W/Fe vs water/air in Fig. 4(b)]. For instance,
we observe a separation across high-, medium-, and low-density
materials, as depicted in Fig. 4(b) with pillar 1 (W), pillar 2 (Fe),
pillar 3 (water), and pillar 4 (air). Discrimination across materials
of similar densities proves more challenging: t-SNE points overlap
near materials of similar densities, such as Si (~2.33 g/cm3), Al
(=2.7 g/cm?), and concrete (=2.4 g/cm®). At cluster boundaries,
the t-SNE analysis shows that the effective material thickness along
the muon trajectory could significantly impact machine-learning
applications. For instance, we can observe that pillar sampling
regions with higher path-integrated density yield much more
tightly grouped points in the t-SNE analysis, as seen in pillar 1 (W)
and pillar 5 (Al) samples [Fig. 4(b)]. Furthermore, note that pillars
sampling from regions with reduced effective material thickness
along the path, such as the ears of the monkey in pillar 6 (con-
crete), yield an embedding vector similar to pillars sampling from
regions with greater path-integrated density in less dense materials.
This effect is inherent to MST since the physical scattering caused
by the muon is also dependent on the path length through the
material along with its density,' as seen in Fig. 4(b) for pillar 5
(Al), pillar 6 (concrete), and pillar 7 (Si). Partial-volume effects
occurring at boundaries and thin structures, where a pillar typically
lies along smooth transitions between high- and low-scattering
areas instead of forming isolated clusters, suggest that geometry
and thickness influence the pillar descriptors.

Reconstruction biases: The PoCA single-interaction assump-
tion and the broadband energy spectrum of incoming muons intro-
duce characteristic artifacts that bias machine learning applications.
Despite filtering small angles during reconstruction, a diffuse halo
appears around objects and in low-scattering regions due to

ARTICLE pubs.aip.org/aip/jap

60

40

Z Axis

20

20
40 40 v‘&
X'q»\’l's & 0 .

FIG. 5. Halo effect: The 3D scattering density map of a Si monkey head shows
a diffuse halo, with voxel outliers and border effects that impact pillar sampling,
potentially leading to an incorrect embedding. Here, axes are in voxels
(1voxel = 5cm), and the black line is a pillar sample.

aggregated contributions from many paths and energies. An
example of this phenomenon is shown in Fig. 5, where the standard
PoCA 3D reconstruction shows a diffuse halo effect with a large
number of outliers and border effects that impact pillar sampling,
resulting in noisy embeddings in the t-SNE map. High-energy
muons penetrate deeper and scatter less than low-energy muons;
PoCA considers all energies, producing residual background in the
3D scattering-density maps. When pillars sample these zones, their
descriptors inherit that background, which manifests in the t-SNE
map as elongated tails and neighborhoods that are not cleanly sepa-
rable, most evident for low-scattering materials such as pillar 7 (Si)
and pillar 8 (Air) in Fig. 4(b). Consequently, tails in the t-SNE plot
are influenced by the pillar encoding of aggregated scattering statis-
tics from multiple muon paths in the PoCA algorithm, com-
pounded by the geometry of the imaged object.

B. Multiple shapes, single materials

This section focuses on the 4ShapesContainer data set: four
geometric shapes inside the container, all made of the same
material.

Proposed corrections: We correct the PoCA output in two
steps. First, we pre-select simulated muons with momenta between
2 and 10 GeV/c to retain particles that carry most of the density-
contrast signal while excluding very high energy tracks that scatter
minimally. The volumes are then reconstructed with PoCA as in
the previous experiments. Then, we introduce a 3D convolutional
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FIG. 6. Effect of the proposed corrections: (a) t-SNE map of pillar embeddings for the 4ShapesContainer after applying the correction and 3D feature aggregation; colors
denote material classes (legend ordered by increasing effective density). The plot is used for visualization only and shows a smoother, density-driven continuum with the
previous “halo” removed due to convolutions. (b) 3D reconstructed scattering map of the water scene after the 3D convolutional kernel. Axes are in voxels [vox] with isotro-
pic voxel size of 5cm (1voxel = 5cm). The four objects (sphere, cylinder, cube, monkey) are spatially resolved.

layer with smoothing operation that ingests the 3D scattering
density maps and produces a denoised, compact scattering density
map representation for pillar sampling. Hence, we define as the
lower and upper bounds for the offsets from the center of the
kernel k. The 3D convolutional layer is, thus, defined as

ks

M, y,2)=V(x+i,y+jz+k) |ijkE {—{EJ, {%H, (2)

with V(x + i, y + j, z + k) being the values in the filtered input 3D
scattering density map, with the kernel range (i, j, k) as the dis-
placements within the kernel size, k; centered at the point (x, y, z).
We use a 3 x 3 x 3 kernel (i.e., ks, = 3) to exploit spatial relation-
ships between neighboring voxels while preserving edges. For each
of the denoised representations, we extract the pillars following the
sampling procedure detailed in Sec. III B, and the t-SNE algorithm
with a perplexity value of 42 as detailed in Sec. III C. All four
geometric shapes are made from the same material, thus yielding a
higher number of pillars in the entire data set compared to the
previous data set.

Role of 3D convolutions and pillar sampling: Fig. 6(a) high-
lights the t-SNE results for the newly extracted pillars. Figure 6(b)
illustrates the 3 x 3 x 3 median filtering on a Water scene. The
neighborhood-aware filter integrates local context from adjacent
voxels, producing smoother scattering-density maps and mitigating
the single-voxel concentration artifacts typical of unfiltered PoCA.
After filtering, the 3D map is sampled using the proposed pillars.
The filtered, more contextual pillar descriptors yield tighter, more
coherent neighborhoods in the embedding when sampling all
materials within the VOI. However, when material densities are

close to the background, these can be filtered excessively by the
convolution kernels; for instance, the number of points represent-
ing air in the t-SNE map has greatly diminished, yet the remaining
ones appear grouped in the same region. Compared with Fig. 4, the
median kernel preserves interfaces across all three dimensions and
averages out uncorrelated noise, improving separability without
excessive boundary blurring.
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V. CONCLUSION

Data scarcity and reconstruction methods remain a critical
bottleneck in machine-learning applications for 3D muon-
scattering tomography. To address this, we presented a workflow
that couples structured, pillar-based sampling with unsupervised
embedding (t-SNE) to expose material-specific scattering signatures
in fully synthetic B2G4 scenes. Because MST has often relied on
geometry-based reconstruction, with PoCA as the mainstream algo-
rithm, we adopt PoCA as our baseline; its single-scatter simplifica-
tion epitomizes the challenges that learning methods must
overcome. The results confirm that objects spanning a wide density
range can indeed be separated; however, they also reveal how
reconstruction bias and the broad cosmic muon energy spectrum
can obscure those differences. To mitigate these effects, we (i) pre-
filter the muon spectrum before POCA reconstruction to reduce
noise from high-energy muons and (ii) apply 3D convolutions that
fuse neighbor context to smooth out artifacts, thereby sharpening
the pillar descriptors. Geometry and sampling choices still influ-
ence the final embedding, but the proposed convolutional pre-
processing operator improves embedding separations. However,
materials with near-identical density remain difficult to categorize,
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as seen in the t-SNE embeddings, suggesting the need for addi-
tional physics-informed features, momentum estimates in the
reconstruction, and representation-learning models capable of
mapping subtle scattering patterns into more discriminative latent
spaces than is currently possible.
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