elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Visual Localization of a UAV using Semantic Environment Information and Map Data

Zilke, Maximilian (2025) Visual Localization of a UAV using Semantic Environment Information and Map Data. DLR-Interner Bericht. DLR-IB-FT-BS-2025-156. Masterarbeit. University of Göttingen. 65 S.

[img] PDF - Nur DLR-intern zugänglich
14MB

Kurzfassung

The use of Unmanned Aerial Vehicles (UAVs) has grown significantly in recent years, driven by technical advancements that have expanded their applications to areas such as rescue missions, delivery systems, and precision agriculture. These applications often require precise real-time localization of the UAV. While most systems rely on Global Navigation Satellite System (GNSS) based localization due to its widespread availability, GNSS signals are susceptible to vulnerabilities such as jamming, spoofing, and multipath propagation. These issues can lead to significant localization errors, making GNSS unreliable in certain scenarios. To overcome these limitations, alternative localization methods must be explored. Visual localization presents a promising approach, leveraging the onboard cameras commonly equipped on UAVs. The method proposed in this work, combines visual data with a reference query database, such as maps, to estimate the UAV’s position. In this work, the open access maps from OpenStreetMaps are used as reference. Using a given segmentation network, segmentation maps are generated from the captured images. From the resulting segmentation maps, Geographic Information System features, such as street and building information, are extracted and subsequently used for estimating the position of the UAV by matching these features against the reference database.

elib-URL des Eintrags:https://elib.dlr.de/222342/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Visual Localization of a UAV using Semantic Environment Information and Map Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zilke, MaximilianMaximilian.Zilke (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorKrause, StefanStefan.Krause (at) dlr.dehttps://orcid.org/0000-0001-6969-0036
Datum:2025
Open Access:Nein
Seitenanzahl:65
Status:veröffentlicht
Stichwörter:Vision-based positioning, GNSS-denied, geolocalisation, UAV, OpenStreetMap
Institution:University of Göttingen
Abteilung:Institute of Computer Science
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D IAS - Innovative autonome Systeme
DLR - Teilgebiet (Projekt, Vorhaben):D - SKIAS
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge
Hinterlegt von: Schmidt, Rebecca
Hinterlegt am:01 Feb 2026 16:21
Letzte Änderung:01 Feb 2026 16:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.