elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Electrical Load Forecasting in the Industrial Sector: A Literature Review of Machine Learning Models and Architectures for Grid Planning

Eckhoff, Jannis und Wadhwa, Simran und Fette, Marc und Wulfsberg, Jens Peter und Rajakaruna Wanigasekara, Chathura (2026) Electrical Load Forecasting in the Industrial Sector: A Literature Review of Machine Learning Models and Architectures for Grid Planning. Energies, 19 (2). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en19020538. ISSN 1996-1073.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
483kB

Offizielle URL: https://www.mdpi.com/1996-1073/19/2/538

Kurzfassung

The energy transition, driven by the global shift toward renewable and electrification, necessitates accurate and efficient prediction of electrical load profiles to quantify energy consumption. Therefore, the systematic literature review (SLR), followed by PRISMA guidelines, synthesizes hybrid architectures for sequential electrical load profiles, aiming to span statistical techniques, machine learning (ML), and deep learning (DL) strategies for optimizing performance and practical viability. The findings reveal a dominant trend towards complex hybrid models leveraging the combined strengths of DL architectures such as long short-term memory (LSTM) and optimization algorithms such as genetic algorithm and Particle Swarm Optimization (PSO) to capture non-linear relationships. Thus, hybrid models achieve superior performance by synergistically integrating components such as Convolutional Neural Network (CNN) for feature extraction and LSTMs for temporal modeling with feature selection algorithms, which collectively capture local trends, cross-correlations, and long-term dependencies in the data. A crucial challenge identified is the lack of an established framework to manage adaptable output lengths in dynamic neural network forecasting. Addressing this, we propose the first explicit idea of decoupling output length predictions from the core signal prediction task. A key finding is that while models, particularly optimization-tuned hybrid architectures, have demonstrated quantitative superiority over conventional shallow methods, their performance assessment relies heavily on statistical measures like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). However, for comprehensive performance assessment, there is a crucial need for developing tailored, application-based metrics that integrate system economics and major planning aspects to ensure reliable domain-specific validation.

elib-URL des Eintrags:https://elib.dlr.de/222289/
Dokumentart:Zeitschriftenbeitrag
Titel:Electrical Load Forecasting in the Industrial Sector: A Literature Review of Machine Learning Models and Architectures for Grid Planning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Eckhoff, JannisCTC GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wadhwa, SimranUniversity of BremenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fette, MarcCTC GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wulfsberg, Jens PeterHelmut Schmidt UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rajakaruna Wanigasekara, ChathuraChathura.Wanigasekara (at) dlr.dehttps://orcid.org/0000-0003-4371-6108203220153
Datum:Januar 2026
Erschienen in:Energies
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:19
DOI:10.3390/en19020538
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:1996-1073
Status:veröffentlicht
Stichwörter:electrical grid planning; decoupled prediction; industrial load forecasting; adaptive horizon prediction; cycle-aware load learning; hybrid neural network
HGF - Forschungsbereich:Energie
HGF - Programm:keine Zuordnung
HGF - Programmthema:E - keine Zuordnung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):E - keine Zuordnung
Standort: Geesthacht
Institute & Einrichtungen:Institut für Maritime Technologien und Antriebssysteme > Energiekonverter und -systeme
Hinterlegt von: Rajakaruna Wanigasekara, Chathura
Hinterlegt am:22 Jan 2026 07:13
Letzte Änderung:23 Jan 2026 09:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.