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Abstract

The energy transition, driven by the global shift toward renewable and electrification,
necessitates accurate and efficient prediction of electrical load profiles to quantify energy
consumption. Therefore, the systematic literature review (SLR), followed by PRISMA
guidelines, synthesizes hybrid architectures for sequential electrical load profiles, aiming
to span statistical techniques, machine learning (ML), and deep learning (DL) strategies
for optimizing performance and practical viability. The findings reveal a dominant trend
towards complex hybrid models leveraging the combined strengths of DL architectures
such as long short-term memory (LSTM) and optimization algorithms such as genetic
algorithm and Particle Swarm Optimization (PSO) to capture non-linear relationships.
Thus, hybrid models achieve superior performance by synergistically integrating compo-
nents such as Convolutional Neural Network (CNN) for feature extraction and LSTMs
for temporal modeling with feature selection algorithms, which collectively capture local
trends, cross-correlations, and long-term dependencies in the data. A crucial challenge
identified is the lack of an established framework to manage adaptable output lengths in
dynamic neural network forecasting. Addressing this, we propose the first explicit idea of
decoupling output length predictions from the core signal prediction task. A key finding
is that while models, particularly optimization-tuned hybrid architectures, have demon-
strated quantitative superiority over conventional shallow methods, their performance
assessment relies heavily on statistical measures like Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). However, for
comprehensive performance assessment, there is a crucial need for developing tailored,
application-based metrics that integrate system economics and major planning aspects to
ensure reliable domain-specific validation.

Keywords: electrical grid planning; decoupled prediction; industrial load forecasting;
adaptive horizon prediction; cycle-aware load learning; hybrid neural network

1. Introduction
Predicting the electrical load profile is crucial for effective electric grid planning, as it

involves forecasting the electrical power needed over time and the peak amplitude [1–3].
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Managing the power supply at regular intervals (e.g., hourly or daily) ensures reliability and
fosters further growth [4,5]. As the world shifts towards cleaner energy sources, forecasting
techniques support energy management by reducing waste and promoting sustainabil-
ity [5,6]. The significance of this lies in maintaining grid stability, preventing blackouts,
and supporting economic operations. However, challenges arise from factors such as in-
creased consumer demand, unpredictable weather conditions that affect renewable energy
generation, and the complexity of the datasets [7]. Due to the increasing integration of
renewable energy sources, especially solar and wind, it introduces volatility and uncer-
tainty into the grid [8]. In addition, real-time forecasting methods demand more precise
and adaptable solutions to meet energy needs. These issues set the stage for exploring how
advanced architectures can enhance load forecasting for grid planning [3,4,9].

The rise in population and the expansion of industries has increased the pressure on
electrical grids to deliver consistent and reliable power, making efficient forecasting a prior-
ity [10]. The importance of load forecasting cannot be overstated in today’s energy land-
scape, where environmental concerns drive the demand for sustainable solutions [1,3,11].
Load prediction models have several benefits, such as minimizing operational costs for
utility companies by optimizing power generation and distribution, reducing energy waste,
and better integration of renewable energy sources, which are essential for reducing re-
liance on fossil fuels but require careful management due to their intermittent nature [12].
The limitations of forecasting methods that exist include the complex patterns in sequential
data and adapting to sudden changes in demand [4]. Thus, these gaps increase the impor-
tance of a comprehensive review to evaluate recent approaches, identify opportunities for
improvement, and motivate this study to discuss advanced techniques, especially those
that leverage machine learning.

This literature review concentrates on models and architectures for predicting se-
quential signals, including electrical load profiles, with a significance of their applications
and the methodologies employed while also considering algorithms developed for other
signals, such as wind or speed, that share similar predictive objectives and boundary condi-
tions [9,13,14]. The review aims to explain the overview of different approaches, synthesize
existing methods, compare their capabilities and limitations, and identify the trends in this
field [15]. The diverse methodologies, as seen in most papers, include techniques such as
Auto Regressive Integrated Moving Average (ARIMA), advanced deep learning models
like LSTM networks, and hybrid model strategies that combine different architectures,
driven by the need to optimize not only the model performance and accuracy but also
their practical viability under real-world constraints such as computational complexity and
limited data availability [1,10,11].

Although recent literature demonstrates that hybrid DL architectures, such as
optimization-tuned LSTMs and CNNs, have successfully minimized forecasting errors
through hyperparameter tuning, these models remain constrained by fixed forecasting
horizons, which requires rigid sliding windows that cannot dynamically adjust to irregular
load profiles without computationally expensive retraining [2]. A critical assessment of
state-of-the-art methodologies reveals that even large time-series models treat the out-
put sequence length as a static hyperparameter determined a priori, thereby lacking a
framework to the treat the duration of a load event as a stochastic variable that needs
to be predicted independently [15]. To address this point, the study proposes the first
distinct strategy of decoupling output length prediction from the core signal estimation;
this modernization is necessary to overcome the inherent limitations of single-step and
fixed horizon strategies, providing a new architecture capable of handling dynamic length
sequences without introducing synthetic noise through padding [4,9].
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A logical framework supports the structure of this paper to provide a clear under-
standing of the topic. Section 2 outlines the methodology, which describes the systematic
approach for the review process, including research questions, as well as inclusion and
exclusion criteria. Section 3 represents the findings, organized by model types such as
statistical, ML, DL, and hybrid, while also covering the insights into the inputs and outputs.
Section 4 summarizes the key insights and highlights their significance for enhancing
electrical grid planning.

2. Methodology of Literature Review
To determine models and architectures for predicting sequential load profiles,

the study adheres to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) framework, as depicted in Figure 1.
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Figure 1. Flow diagram of systematic search results (based on PRISMA).

2.1. Research Questions

For this study, three research questions (RQs) have been formulated, as listed in Table 1.
Using the RQ as a foundation, a structured search strategy is created to effectively gather
relevant literature. The search method is carefully designed to find studies that investigate
the input and output characteristics of electrical load prediction models (RQ1), assess their
use in grid planning and management (RQ2), and analyze their performance based on
accuracy and forecasting metrics (RQ3).

Table 1. Research questions guiding the systematic literature review.

ID Research Question

RQ1 What are the primary input and output characteristics considered in the
development of electrical load prediction models?

RQ2 How can identified models and frameworks be applied effectively to
improve electrical grid planning and management?

RQ3 How do different models and architectures compare in terms of accuracy
and performance metrics for the prediction of electrical loads?
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2.2. Search Strategy

The search for the relevant literature was based on a primary search string:

‘(predict * OR forecast * OR simulation * OR model) AND (power OR energy * OR load)
AND (manufacture * OR machine * OR system OR industry * OR product *)’.

The search string was derived by decomposing the RQs into three primary keyword
groups. The intersection of these groups ensure the literature discusses predictive mod-
eling (Methodology) of electrical consumption (Target variable) within complex systems
(Domain), which is essential for modern grid planning.

Group 1: Methodology

Keywords: (predict * OR forecast * OR simulation * OR model)
The search must retrieve studies that explicitly develop or test algorithms to include
architectures such as LSTM and CNN in simulated environments before deployment,
as seen in studies or probabilistic forecasting frameworks which link to RQ1 (identifying
model characteristics) and RQ3 (comparing architectures and accuracy).

Group 2: Target variable

Keywords: (power OR energy * OR load)
The group directly addresses RQ1 by defining input/output characteristics. For instance,
the studies may focus on “power load forecasting”, “energy consumption”, or specific
“load profiles”.

Group 3: Domain

Keywords: (manufacture * OR machine * OR system OR industry * OR product *)
To address RQ2, it is necessary to identify where these models are deployed. Consequently,
keywords like “industry”, “manufacture”, and “machine” are crucial for locating studies
where load forecasting facilitates grid planning for high demand industrial sectors or
complex “systems” (e.g., integrated energy systems).

This search string was applied to the article titles to ensure a broad yet targeted
retrieval of relevant publications. While residential and macro-grid studies exist, this
review specifically targets the “industrial loads” subset of grid planning. We argue that
accurate industrial forecasting is a critical yet distinct component of broader grid planning
necessitated not only by high energy intensity of manufacturing systems but also by
emerging challenges [6,16–22]. Many articles were removed based on a citation threshold
of at least five, except for recent publications (2023–2025), where the criterion was relaxed
due to the limited citation accumulation time. Three main criteria are used to filter the
papers: (a.) whether the topics relate to energy domain, (b.) whether modeling techniques
are a substantive part of the paper, and (c.) whether there are duplicate papers or papers
discussing similar ideas or contents.

2.3. Inclusion and Exclusion Criteria

The following are the inclusion and exclusion criteria that have been applied to ensure
the quality and relevance of the studies.

Inclusion Criteria

I1. Papers published in the last 15 years (2010–2025) are taken into account to make
sure we stick to the recent developments in the industry.

I2. Papers written only in English are considered.
I3. A minimum threshold of more than 5 cites is taken into account.

Exclusion Criteria

E1. Non-peer reviewed works, studies on non-real time forecasting, or those lacking
methodological detail.
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E2. Papers that did not focus primarily on the energy sector.

2.4. Retrieval of Results

The initial search retrieved 872 results from Google Scholar, 200 from Scopus, and 885
from Science Direct. They are filtered down to 72 relevant papers based on the inclusion
and exclusion criteria detailed in Section 2.3. After eliminating duplication and applying
quality criteria, a total of 58 papers are selected for review.

3. Results
Following the SLR, this section presents the comprehensive findings of the study, exam-

ining the information regarding inputs, outputs, and applications in predictive modeling.

3.1. Classification of Models and Methods

Developing robust models to predict load profiles typically involves three key steps:
(i.) extracting related attributes; (ii.) analyzing influencing factors; and (iii.) selecting
appropriate forecasting models. This literature review explores architectures employed
in load profile prediction, categorized into statistical, ML, DL, and hybrid approaches.
All the models listed in the Tables 2–5 employ fixed (static) length forecasting horizons.
Approaches capable of dynamic output length prediction remain scarce and are thus
discussed separately in Section 4.

3.1.1. Statistical Models

A statistical model is a mathematical relationship between random variables, which
can change unpredictably, and non-random variables that remain consistent or follow a
deterministic pattern [5,7,23]. By employing statistical assumptions, these models make
inferences about the fundamental mechanisms that generate the data and the relationships
among the data points [23]. The primary goal is to optimally guide decision making by
using this inferred information to maximize benefits or minimize negative consequences
under uncertainty. Sophisticated models ensure that statistical inferences are logically
consistent and can be extended to new situations, such as predicting future data or inferring
properties across different experimental setups [23].

While statistical frameworks like the Seasonality Analysis of Electricity Consumption
(SAECC) provide a baseline for identifying irregularities, comparative studies demonstrate
that computational intelligence models utilizing Z domain normalization can achieve a rela-
tive improvement in false positive and false negative rates of over 42% compared to purely
statistical approaches [24]. They promote transparency by quantifying uncertainty, such as
through confidence intervals [2,25]. Statistical models explicitly represent the underlying
physical processes; therefore, they are often referred to as “black-box” methods [13].

Common techniques within statistical modeling include the following:

1. Linear regression (LR): Explains the linear relationship between dependent and
independent variables. Elastic Net is a linear regression method that includes regular-
ization [1,2].

2. Auto Regressive (AR) and Moving Average (MA): The AR model is a linear regression
of the current value based on one or more previous values, while the MA model is
linear regression that regresses the current value against white noise or errors of one
or more past values [2,9,26].

3. Auto Regressive Integrated Moving Average (ARIMA): Combining AR and MA
components, with ARIMA additionally handling non-stationary data. The common
approach to establish ARIMA models is the Box–Jenkins methodology which best
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fits the behavior of the time series [13]. It consists of model identification, parameter
estimation, model validation, and forecasting [15].

4. Exponential Smoothing: Used to pre-process data by mitigating noise [27]. Other tech-
niques such as Synchro squeezing Wavelet Denoising (SWT), are similarly employed
to remove high frequency noise, which lays foundation for accurate forecasting [14].

5. Spearman Rank Order Correlation Coefficient (SROCC): It is a non-parametric
statistical method used to analyze the non-linear relationship between variables,
with the primary purpose of quantifying the degree of influence of each parameter on
another [14].

6. Principal Component Analysis (PCA): A method used for dimensionality reduction
and solving multicollinearity, and feature extraction/selection techniques aimed at
identifying important variables [1,3].

Statistical models have been recognized for their suitability in very short-term forecast-
ing (seconds to minutes), particularly in the prediction of wind power [13]. Min Yu et al.
employ several techniques for analyzing and preparing data for building cooling load
(CL) forecasting. The autocorrelation function (ACF) was used to calculate the temporal
correlation within historical cooling load time series. The ACF analysis revealed distinct
periodic patterns in the data, which helped to determine the appropriate time intervals
for the historical load to be used as reference factors, increasing precision and reducing
computational burden [14]. Table 2 presents various studies in the literature in which
statistical models have been applied effectively. Statistical models have relatively low
computational costs [2]. In addition, statistical methods perform well in short-term predic-
tions. For example, an ARMA model showed a 20% error reduction in persistence for a
10 h wind speed forecast [13]. A proposed hybrid statistical method demonstrates small
mean relative error in multi-step forecasting, which outperforms classical time-series and
backpropagation network methods. Thus, statistical approaches, particularly hybrid ones,
are robust in handling ‘jumping data’ [15].

Due to their reliance on simpler formulas, statistical models are considered prone
to overfitting, failing to capture the complexity of data [1]. They struggle with limita-
tions, such as the reliance on assumptions about the true distribution of the data, which
might almost certainly be incorrect in reality. Over-reliance on ’goodness-of-fit’ measures
without ensuring that the model is statistically well-specified can lead to unreliable infer-
ences [28]. For example, the persistence method is explicitly noted to be unsuitable for
long predictions [2]. Although some statistical models can function with less data, others
(categorized as the ‘learning approach method’) require a significant amount of historical
time-series data to perform effectively [13]. Therefore, their limitations, especially with
complex non-linear data and longer forecasting horizons, often lead researchers to explore
more advanced machine learning approaches [2].

Table 2. Overview of identified literature for statistical models.

Year Author Input Output Accuracy Model Type

2010 H Liu et al. [15] Time-series wind speed
wind power

Forecast wind speed
and power

11.34% (MAPE)
[short-term multi-step
ahead]

Wavelet, ITSM, ARIMA,
Box–Jenkins

2012 A.M. Foley et al. [13] Wind and weather data,
forecast

Wind power/Speed
forecast

10–15% (MAE) [short
term]

Persistence, AR, MA,
ARMA, ARIMA, u.a.

2014 S. Tasnim et al. [26] Past wind data,
generated power Wind power forecast ∼0.16 (MAE) [short term] Linear Regression (LR)

2015 A. K. Nayak et al. [29] Historical wind data, air
density, power coefficient Wind forecast, ramps 136.103% (MAPE) [short

term] ARIMA
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Table 2. Cont.

Year Author Input Output Accuracy Model Type

2017 C. Deb et al. [27] Energy consumption,
occupancy, timestamp

Energy, cooling/heating
load, temp., electricity
price

1.05–2.59% (MAPE)
[short, medium,
and long term]

ES, ARMA, ARIMA

2020 M. Zaimi et al. [30] Meteorological, PV-data,
PV-parameters

PMPP, efficiency,
I–V-curve, model
parameters

<3% (NRMSE) [short
term]

Non-linear fit, empirical,
polynomial formula

2020 R. Ahmed et al. [31]
Meteorol. parameters,
PV time series,
timestamp

PV-output/radiation
forecast

2–17% (NRMSE) [short,
medium, and long term] EWMA, ARMA, ARIMA

2022 D.V. Pombo et al. [3] Power production,
weather measurements Short term PV-forecast

20.63% (MAPE, SPAR
model), 32.07% (MAPE,
Persistence model) [short
term]

Persistence, SPAR

2022 C. Wang et al. [32] Multi-load data, forecast
date

Multi-energy load last
24 h

1.30 % (MAPE) [short
term] ARIMA, VAR, GRA, PCC

2022 W.H. Chung et al. [1] Heat load variables, time,
weather forecast Short-term forecast load 2.60 (MAE) [short term] Elastic Net

2023 M. Yu et al. [14] Cooling load, time
factors, meteorol. factors

Cooling load forecast
(buildings)

statistical benchmark not
included [short term] ARIMA, SROCC, ACF

2024 T. G. Grandón et al. [33]
Electricity consumption,
meteorol., economic.,
calendar

Electricity demand
forecast

430.8 MW (MAE, LR)
[medium term] LR, ARIMA, ARMA

2025 W. Liao et al. [2] Time series, load data Load forecast 4.4% (MAPE, LR) [short
term] LR, Persistence

3.1.2. Machine Learning Models

Machine learning is a core component of artificial intelligence and a key pillar of the
Fourth Industrial Revolution (4IR or Industry 4.0) that empowers algorithms to identify
patterns in training data and deliver predictions on new data without explicit program-
ming [34]. By optimizing a model’s performance on a dataset that mirrors real world tasks
through a process called model training [34,35].

The strength of ML lies in its ability to learn from large volumes of data, underpin-
ning its applicability across diver energy domains [2,4,11]. This versatility extends to data
scarce scenarios through frameworks like Physics-Informed Neural Networks (PINNs),
which integrate physical constraints for robust handling of temporal data, while proto-
types like reinforcement learning further strengthen decision making through feedback
mechanisms [34,36,37].

Chung [1] considered short-term heat load forecasting for district heating systems,
which is essential to optimize the operations of combined heat and power plants. They
used a dataset containing weather information, time factors, and historical heat load data.
ML models such as k-Nearest Neighbors (KNN), a simple learner that makes predictions
by averaging nearby data points, serve as a baseline [1,9,31]. Advanced models included
Support Vector Regression (SVR), known for its robustness in high-dimensional spaces,
as well as Random Forest (RF) and XGBoost, which enhance accuracy [1]. Liao [2] partic-
ularly addressed scenarios with scarce historical data. Although the primary focus is on
large time-series models, several established traditional and ML benchmarks are included,
such as the persistence model (PM), which predicts by simply copying the value from
the previous step, and linear regression, which is used to estimate future load values.
The study also employs Regression Tree (RT) models and XGBoost, utilized for forecast-
ing peak power demand and long-term electricity consumption. Dokur [38] presented
an Extreme Learning Machine (ELM), which is characterized as a neural network with
a single hidden layer. In ELM, the weights and biases of the input layer are randomly
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initialized and remain fixed, whereas the output weights are determined by solving a linear
system. This unique architecture contributes to the notable rapid learning speed, ease
of implementation, and excellent generalization capabilities of ELM in forecasting tasks.
To enhance performance, the study integrates it with the Single-Candidate Optimizer (SCO)
to refine its initial parameters, resulting in the ELM-SCO model. The paper also compares
this model against other ELM variants, including Meta-ELM, which uses several ELM’s
trained on distinct data subsets, and Multi-Layer Meta-Kernel-ELM (ML-Meta-KELM),
which incorporates kernel functions to enhance stability and generalization. Additionally,
the studies include MLP, a traditional feed-forward neural network, as a benchmark. These
models utilize time series of power measurements from smart meter datasets to forecast
node voltages in low-voltage networks with high penetration of low-carbon technologies.
Faizan and Afgan [39] leveraged an MLP architecture to create a robust predictive model.
The networks hidden layers utilize the Hyperbolic Tangent Sigmoid (HTS) function to
capture non-linear relationships. To optimize the weights and biases of the MLP model
and address multi-objective optimization problems, a Multi-Objective Genetic Algorithm
(MOGA) is implemented. MOGA is a population-based search mechanism that uses genetic
operations such as crossover, mutation, and selection to explore a broad solution space,
with the aim of avoiding local optima and achieving global optimization by effectively
maximizing and minimizing outputs. The study highlights that MOGA outperformed other
methods, such as Bayesian optimization, in terms of error minimization and robustness.
Alternative methods, such as decision trees, SVMs, and Particle Swarm Optimization (PSO),
were considered less appropriate due to their limitations in regression, multi-objective
optimization, and the handling of continuous variables.

Despite these advancements, ML is often limited by its interpretability and repro-
ducibility as well as bias and noise introduced during model development. These con-
straints led to the design of DL models, by using automatic feature extraction, have achieved
considerably better performance and scalability in sequential data modeling [35,40].
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Table 3. Overview of identified literature for machine learning category.

Year Author Input Output Accuracy Model Type

2012
Aoife M. Foley, Paul G. Leahy,
Antonino Marvuglia, Eamon J.
McKeogh [13]

Historical wind data, wind power
production, NWP forecast values,
Weather forecast data

Wind power
generation/output/patterns,
Forecasted wind speed

10–15% (MAE) [short term]
Multi-layer Perceptron (MLP), Support
Vector Machine (SVM), k-Nearest
Neighbors (kNN), Bayesian methods

2016 HA Azzeddine, Mustapha Tioursi,
Djamel Eddine C, Brahim K [41] Cell temperature, Solar irradiance Current, Voltage, Maximum power

point (MPP) of a photovoltaic panel 0.03 (MSE) [short term] Radial Basis Function (RBF)
neural network

2017 Weicong Kong et al. [42] Household power consumption time
series

Short-term residential electric energy
forecast 8.18% (MAPE, aggregated) [short term]

BPNN, SVM, Extreme Learning
Machine (ELM), Adaptive Neuro
Fuzzy Inference System (ANFIS),
Radial Basis Function (RBF), Decision
Tree (DT), Bayesian Neural Network

2019 Tae-Young Kim, Sung-Bae Cho [43] Household power consumption: time
variables, sensors, submetering

Residential electric energy
consumption (Global Active Power) 31.84% (MAPE) [short/medium term]

SVR, Random Forest (RF), Decision
Tree (DT), Multi-Layer Perceptron
(MLP)

2020 Liufeng Du, Linghua Zhang, Xu
Wang [44] Historical load data Load forecasting 2.14% (MAE) [short term, one hour

ahead]

SVR, Extreme Learning Machine
(ELM), Stacked Denoising
Autoencoder (SDAE)

2020 Kuihua Wu et al. [45] Electric load, Temperature, Gas
consumption, Cooling load Short-term electric load forecasting 4.78% (MAPE) [short term] BPNN, RF Regression (RFR), SVR

2020
PW Khan, Yung-Cheol Byun,
Sang-Joon Lee, Dong-Ho Kang,
Jin-Young Kang, Hae-Su Park [6]

Historical power consumption data,
Time-series data Energy consumption forecasting 5.77% (MAPE) [short term, one hour]

Support Vector Machine (SVR), Lasso,
Ridge, GradientBoost, XGBoost, MLP
Regressor, CatBoost

2022 Huafeng Xian, Jinxing Che [11] Historical load data Power load forecasting 3.37% (MAPE) [short term] BPNN, SVR (RBF kernel), MSC
framework for optimization

2022 Won Hee Chung, Yeong Hyeon Gu,
Seong Joon Yoo [1]

Heat load variables, Time factors,
Weather forecasts Short-term load forecasting 0.587 (MAE) [short term] k-Nearest Neighbors (k-NN), SVR, RF,

XGBoost

2022 Chen Wang et al. [32] Multi-energy load data, Forecast
date/timestamp/type Multi-energy load forecasting (24 h) 4.02% (MAPE) [short term]

Extreme Learning Machine (ELM), RF,
SVR, Bagging-Boosting
Neural Network

2022 Daniel Vázquez Pombo et al. [3] Power production and meteorological
measurements Short-term PV power forecasting 11.77% (RMSE) [short term, five hour] RF, SVR

2023 Ke Li et al. [46] Multi-energy load data, Meteorological
factors

Short-term multi-energy load
forecasting 3.64% (MAPE) [short term]

SVM, Least Squares SVM (LSSVM),
Generalized Regression Neural
Network (GRNN)
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Table 3. Cont.

Year Author Input Output Accuracy Model Type

2023
Jintao He, Lingfeng Shi, Hua Tian,
Xuan Wang, Xiaocun Sun, Meiyan
Zhang, Yu Yao, Gequn Shu [47]

State variables (temperature, pressure,
mass flow rates), Input variables (cold
source inlet mass flow rate, compressed
rotational speed, pump rotational
speed), Disturbance variables

Net power and refrigerating capacity
of the CO2 combined cooling and
power cycle (CCP) system

0.0023 (RMSE) [short term]

Multilayer Feedforward Neural
Network (MLFF), Radial Basis
Function (RBF) neural network,
Generalized Regression Neural
Network (GRNN)

2023

Md Shazid Islam, A S M Jahid Hasan,
Md Saydur Rahman, Jubair Yusuf, Md
Saiful Islam S, Farhana Akter
Tumpa [48]

Meteorological data: DNI, DHI, GHI,
temperature, wind direction, wind
speed

Solar power generation, predicted as a
classification problem 81.02% (Classification) [short term]

Ensembles: Adaboost Classifier,
Gradient Boosting Classifier, Random
Forest Classifier

2023 Connor Scott, Mominul Ahsan,
Alhussein Albarbar [49]

PV generation history, Time variable,
Meteorological vars. Forecasted PV power output 32.0 (RMSE) [short term] Linear Regression (LR), RF, SVM,

Neural Networks (NN)

2024 L.R. Visser et al. [50] Meteorological vars., Lagged PV gen.,
Prob. forecasts, Market prices Forecasted PV power generation 4.8 (CRPS) [short term, day ahead]

Multiple Linear Regression (MLR), RF,
Smart Persistence (SP), Quantile
Regression (QR), Quantile RF (QRF),
Clear Sky Persistence Ensemble (CSPE)

2024 Lionel P. Joseph et al. [9] Meteorological vars., Predictors,
Ground level, Satellite climate vars. Hourly wind speed forecasting 0.421 m/s (MAE) [short term, one

hour]
RF, Decision Tree Regressor (DTR),
Gradient Boosting

2025 Wenlong Liao et al. [2] Time-series datasets, Scarce historical
load data Load forecasting 6.1 % (MAPE) [short term, 1 h–24 h]

Regression Tree (RT), XGBoost, MLP,
Time-series large language model
(TimeLLM)

2025 Emrah Dokur et al. [38] Active/reactive power measurements,
Past voltage Forecasted node voltage 0.0019 (MSE) [short term] Extreme Learning Machine (ELM)

Variants, MLP, ANFIS
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3.1.3. Deep Learning Models

Deep learning, a subset of ML, has become the dominant AI model architecture over
the past decade, as demonstrated across diverse application domains [35]. The capability
to extract latent features and demonstrate strong adaptability to complex non-linear rela-
tionships, which contributes to high forecast accuracy. A key advancement is the ability to
leverage pre-trained knowledge from massive and diverse datasets, allowing models to
perform effectively even with limited task-specific data through a fine-tuning process [2].
Some DL model types mentioned in the Table 4 are as follows:

1. Artificial Neural Network (ANN): As a foundational element within the broader
field of DL, ANNs are structured with input, hidden, and output layers [6,8,31]. They
process input data through weighted connections and activation functions like ReLU,
learning complex patterns via backpropagation and optimization (e.g., Adam solver).
These models are increasingly employed for prediction tasks, such as determining
if power delivery network design violates its target impedance, without needing
additional simulations during optimization processes [51].

2. LSTM: A specialized type of Recurrent Neural Network (RNN) that is highly effective
for processing sequential data and capturing temporal features from time series [2,52].
Studies have shown that LSTMs often demonstrate superior performance over con-
ventional model such as MLPs in tasks like short-term load forecasting [2].

3. Gated Recurrent Unit (GRU): Another well-known RNN model that is considered a
simplified version of the LSTMs is GRU, possessing a more streamlined architecture
with fewer gates (typically two: a reset gate and an update gate), which can lead to
faster training times while still maintaining competitive performance [2].

4. Convolutional Neural Network (CNN): It excels in extracting spatial and temporal
features from data, identifying local patterns through convolutional and pooling
layer architecture [2,53]. Originally popular in image processing, their application
has expanded to time-series analysis, where they can identify local patterns and
relationships within data segments [1,3,14]. In the context of load forecasting, CNNs
are specifically used to depict spatial features between loads at different points in a
system, such as various buses in a power network [1,2,53,54].

5. Graph Neural Network (GNN): These are specialized models designed to operate
on structured graph data, which are characterized by nodes and edges representing
entities and their relationships, respectively. They are particularly adept at capturing
both structural and temporal information within complex networks [2,53]. This makes
them highly suitable for applications where data exhibit relational structures, such as
heating networks, smart grids, or traffic flow systems [2].

6. Transformer: Unlike traditional RNNs which are inherently sequential and struggle
with parallelization and long-term dependencies, the transformers are entirely based
on attention mechanisms [2,32]. To manage information flow, prevent gradient degra-
dation, and accelerate convergence, residual connections and layer normalization
are integrated around each sub-layer. Since the model has no recurrence, positional
encodings (e.g., sine-cosine functions) are added to the input embeddings to inject
information about the order of token in the sequence [32,55].

Despite their power, large pre-trained time-series models such as Time GPT often
generalized poorly to new domains when the pre-training data do not match the target
distribution, exhibiting weak performance [2]. Thus, there is a necessity for hybrid models
that can be developed to exploit the strengths of different techniques, for example, by
combining large models with traditional forecasting models to mitigate these underlying
distributional differences and increase overall predictive accuracy.
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Table 4. Overview of identified literature for deep learning models.

Year Author Input Output Accuracy Model-Type

2014 V. Lo Brano, G. Ciulla, M. Di Falco [8]
Air temp.; cell temp.; solar irradiance;
wind speed; open-circuit voltage;
short-circuit current

PV module power forecast 0.05–1% (Mean error) [short term] RNN; Gamma Memory (GM)

2018 S. Bouktif, A. Fiaz, M.A. Serhani [4] Energy-consumption data; time lags;
weather; schedule vars Short/medium-term load forecast 0.56% (RMSE) [short and medium

term] LSTM; RNN

2019 N. Jinil, S. Reka [56] EV motor power req.; other component
loads; driving conditions

EV power-req. prediction; distribution
optimization 4.10% (MAPE) [long term] Modular RNN (MRNN)

2019 C.M. Schierholz, K. Scharff, C.
Schuster [51] Simulated PCB-variation data Binary TI-violation prediction 88% (Classification) [static design] Multi-layer ANN

2019 L. Du, L. Zhang, X. Wang [44] Historical load data Load forecasting 2.14% (MAE) [short term, hour ahead] 3D-CNN-GRU

2019 T.Y. Kim, S.-B. Cho [43] Household consumption dataset (time,
sensors, submeter vars)

Residential energy-consumption
prediction 31.83% (MAPE) [short term] CNN; LSTM; GRU; Bi-LSTM; Attention

LSTM

2021 H. Pariaman, G.M. Luciana, M.K.
Wisyaldin, M. Hisjam [52] Historical time-series sensor data Reconstructed time-series patterns 93.36% (MAE) [short term] LSTM-Autoencoder

2022 H. Xian, J. Che [11] Historical load data Power-load forecasting 3.025% (MAPE) [short term] LSTM; RNN

2022 W.H. Chung, Y.H. Gu, S.J. Yoo [1] Heat-load vars; time factors; weather
forecasts Short-term load forecast 94.2% (R2) [short term] DNN; RNN; LSTM; LSTM Attention

2022 Z. Gao, J. Yu, A. Zhao, Q. Hu, S.
Yang [57]

Load data; internal/external
disturbances Short-term cooling forecast 3.25% (MAPE) [short and medium

term] ELM; GRNN; BP; WNN

2022 D. Niu, M. Yu, L. Sun, T. Gao, K.
Wang [58] Cooling, heat

electric load data; time features;
external factors and Multi-energy-load
forecast

5.44% (MAPE) [short term] LSTM; BiGRU

2022 C. Wang, Y. Wang, Z. Ding, T. Zheng, J.
Hu, K. Zhang [32]

Multi-energy load data; forecast
date/timestamp/type Next-24 h multi-energy forecast 1.037% (MAPE) [short term, day

ahead] Multiple-decoder Transformer

2022 Y. Guo, Y. Li, X. Xuebo [59] Multi-energy load; meteorological;
date info

Combined heating, cooling and electric
forecast 1.76% (MAPE) [short term] LSTM; BiLSTM; MTL

2022
D. Vázquez Pombo, P. Bacher, C. Ziras,
H.W. Bindner, S.V. Spataru, P.E.
Sørensen [3]

PV production and meteorological data Short-term PV forecast 14.03% (RMSE) [short term, 5 h] CNN; LSTM

2023 W. Cui, W. Yang, B. Zhang [60]

Time-series data (voltage magnitude,
rotor angle, frequency deviation),
system topology, fault locations/types,
power injections (active and reactive)

Predicted trajectories; unstable-case
identification

0.01% (Relative MSE) [transient,
seconds]

DNN (Fourier-transform + filtering
layers)
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Table 4. Cont.

Year Author Input Output Accuracy Model-Type

2023 J. He, L. Shi, H. Tian, X. Wang, X. Sun,
M. Zhang, Y. Yao, G. Shu [47]

CCP system params (temp., pressure,
mass-flow), disturbance vars (torque,
speed, exhaust), inputs (mass-flow rate,
compressor and pump speeds)

Net power; refrigerating capacity;
state-variable prediction 0.13% (RMSE) [transient, seconds] MLFF NN; RNN; LSTM; GRU

2023 Y. Huang, Y. Zhao, Z. Wang, X. Liu, H.
Liu, Y. Fu [61] District-heating consumption data Multi-horizon district-heat forecast 31.2% (RMSE) [medium /long term] TPA; LSTM; CRNN; Encoder; MSL

2023 M. Yu, D. Niu, J. Zhao, M. Li, L. Sun, X.
Yu [14] Cooling-load data; time Short-term cooling forecast Not specified LSTM; Bi-LSTM; DNN; RNN; CNN;

TTGAT-GTC

2024 X. Wang, H. Wang, S. Li, H. Jin [54] Historical meter data Real-time short-term load forecast 0.92% (MAPE) [short term] LSTM; LSTM + Att; BiLSTM + Att

2024 Y. Huang, Y. Zhao, Z. Wang, X. Liu, Y.
Fu [53]

Heat-load records; meteorological;
exogenous factors Future heat-load forecast 7.2% (MAE) [short term] GNNs

2024 L.P. Joseph, R.C. Deo, D. Casillas-Pérez,
R. Prasad, N. Raj, S. Salcedo-Sanz [9]

Meteorological predictors; ground and
satellite data Hourly wind-speed forecast 0.149 m/s [short term] (MAE) LSTM; BiLSTM

2025 W. Liao, S. Wang, D. Yang, Z. Yang, J.
Fang, C. Rehtanz, F. Porté-Agel [2] Time series; scarce historical load data Load forecasting 2.1% (MAPE) [short term] Transformer (positional encoding,

multi-head attention, CNN)

https://doi.org/10.3390/en19020538

https://doi.org/10.3390/en19020538


Energies 2026, 19, 538 14 of 32

3.1.4. Hybrid Models

Hybrid models are computational frameworks that combine multiple methodologies
such as statistical, ML, neural networks, or optimization algorithms to create a more
accurate and robust prediction system [3,4,6,62]. These models leverage the complementary
strengths of individual approaches, making them effective for complex problems where
single-method solutions struggle to handle the variability and non-linearity present in
real-world data [6].

The key strength lies in their ability to integrate diverse techniques such as combining
Support Vector Regression, neural networks, boosting methods, and feature selection, they
handle both temporal and spatial patterns, account for physical constraints and deal with
uncertainties [3]. They also incorporate feature engineering techniques, such as RF for
parameter selection and improved optimization algorithms, such as the Improved Parallel
Whale Optimization Algorithm (IPWOA) to tune network parameters [57]. For example,
the parallel CNNs-LSTM Attention (PCLA) model extracts spatiotemporal characteris-
tics and then intensively learns importance [1]. The synchro squeeze Wavelet Denoising
(SWT), the Temporal Trend-aware Graph Attention Network (TTGAT), and the Gated
Temporal Convolution layer (GTC) model are used for CL forecasting, considering spa-
tiotemporal coupling and frameworks that utilize feature separation-fusion technology,
with improved CNNs and multitask learning (MTL) for multienergy load forecasting [46].
These diverse architectures are designed to capture complex characteristics, local trends,
and cross-correlations within the data more effectively. The SWT-TTGAT-GTC model
shows significant improvements in R-squared and a significant reduction in RMSE com-
pared to similar recurrent or convolutional networks [46]. Another example discussed by
Joseph [9] is the three-phase hybrid Convolutional Bidirectional Long Short-Term Mem-
ory (3P-CBiLSTM) model framework, effectively captures both past and future long-term
dependencies from historical sequential data. To enhance the capabilities, the model em-
ploys the Two-phase Mutation Grey Wolf Optimizer (TMGWO) for robust dimensionality
reduction and feature selection. Additionally, a hybrid Bayesian Optimization and Hyper
Band (BOHB) algorithm is utilized for hyperparameter optimization, which is crucial to
fine-tuning complex “black-box” models to achieve optimal performance.

Individual deep learning models, in spite of their advanced capabilities, exhibit limita-
tions that necessitate hybrid approaches. RNNs are susceptible to vanishing or exploding
gradients, affects their ability to learn long-term dependencies, a problem that LSTMs aim
to mitigate [1]. However, LSTMs can also struggle to simultaneously capture both long-
term and short-term local dependence patterns or to fully account for cross-correlations
in multivariate time-series data [14,46]. Integrated energy system forecasting often ex-
tends single-load approaches, which do not learn multi-energy coupling information or
process disparate input features uniformly, thus introducing noise [46]. Hybrid models
are therefore essential as they combine the strengths of various architectures and inte-
grate mechanisms such as attention or advanced optimizers to overcome these individual
limitations, resulting in more accurate, robust, and comprehensive forecasting solutions [1].

Based on the distinct yet synergistic advantages outlined in Table 6, it is evident
from the data in Table 5 that CNN, LSTM, and BiLSTM are the most frequently utilized
algorithms in hybrid frameworks, corresponding to the model types illustrated in Figure 2.
Despite their strengths, hybrid models can be limited by increased complexity, demand for
computational resources, and the need for careful parameter tuning and integration [3,11].
Sometimes, the model might also suffer from overfitting if not properly validated, and their
interpretability can decrease as the architecture becomes more intricate, especially with
extensive ensemble systems [4].
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Table 5. Overview of identified literature for hybrid models (shortened for visualization).

Year Author Input Output Accuracy Model Type

2018 S. Bouktif, Ali Fiaz, Mohamed Adel
Serhani [4]

Electric energy consumption data,
Time lags, Weather data,
Schedule-related variables

Forecasted electric load/consumption
(short- and medium-term horizons)

0.62% (RMSE) [short and medium
term]

Genetic Algorithm (GA)- Enchanced
LSTM-RNN

2020
PW Khan, Yung-Cheol Byun,
Sang-Joon Lee, Dong-Ho Kang,
Jin-Young Kang and Hae-Su Park [6]

Historical power consumption data,
Time-series data Energy consumption forecasting 4.29% (MAPE) [short term] Ensemble thrree base models 1.

CatBoost 2. SVR3. MLP

2020
Kuihua Wu, Jian Wu, Liang Feng, Bo
Yang, Rong Liang, Shenquan Yang, Ren
Zhao [45]

Historical electric load, Temperature,
Gas consumption, Cooling load Short-term electric load forecasting 99.1% (R2) [short term]

Attention-based
CNN-LSTM-BiLSTM model

2022 Huafeng Xian, Jinxing Che [11] Historical load data Power load forecasting 2.71% (MAPE) [short term] MSC-PSO-SVR, Ensemble model (RF
and XGBoost)

2022 Won Hee Chung, Yeong Hyeon Gu,
Seong Joon Yoo [1]

Heat load-derived variables, Time
factors, Weather forecasts Short-term load forecasting 94.2% (R2) [short term] Parallel CNN-LSTM Attention (PCLA)

2022
Daniel Vázquez Pombo,Peder Bacher,
Charalampos Ziras, Henrik W. Bindner,
Sergiu V. Spataru,Poul E. Sørensen [3]

Basic dataset including power
production and meteorological
measurements

Short-term Photovoltaic (PV) power
forecasting 18.65% (MAPE) [short term] CNN-LSTM

2022 Dongxiao Niu, Min Yu, Lijie Sun, Tian
Gao, Keke Wang [58]

Historical cooling, heat, and electrical
load data, Time features, External
influencing factors

Short-term multi-energy load
forecasting 2.75% (MAPE) [short term]

CNN-BiGRU, BiGRU-Attention
CNN-BiGRU-Attention- Multi Task
Learning (MTL)

2023 Min Yu, Dongxiao Niu, Jinqiu Zhao,
Mingyu Li, Lijie Sun, Xiaoyu Yu [14]

Historical cooling load (CL) data, Time
factors, Meteorological factors

Short-term building cooling load (CL)
forecasting 8.81% (MAPE) [short term]

SWT (Synchrosqueezing Wavelet
Denoising), TTGAT (Temporal
Trend-aware Graph Attention
Network), GTC (Gated Temporal
Convolutional Layer)
SWT-TTGAT-GTC Model

2024
Ke Li a, Yuchen Mu a, Fan Yang a,
Haiyang Wang a, Yi Yan b, Chenghui
Zhang [63]

Uncertain variables in an Integrated
Energy System (IES), Meteorological
data

Joint source-load-price forecasting 4.10% (MAPE) [short and long term]

MCNN-SCAM-LSTM-MTL where,
MCNN- Multi-column Convolutional
Neural Network, SCAM- Sequential
Convolution Attention Module
MTL-BiLSTM, Radial Basis Function
Deep Belief Network (RBF-DBN),
MTL-LSSVM

2024
Sujan Ghimire, Ravinesh C. Deo, David
Casillas-Pérez, Sancho
Salcedo-Sanz [64]

Half-hourly electricity price sequences,
Lagged values of the decomposed
price series, Historical errors

Short-term, half-hourly electricity price
forecasts 5.83% (sMAPE) [short term]

VMD-CLSTM-VMD-ERCRF model
VMD: Variational Mode
Decomposition CLSTM: combined of
CNN and LSTM, ERCRF: Error
compensation and Random
Forest regresssion
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Table 5. Cont.

Year Author Input Output Accuracy Model Type

2024

Jungyeon Park, Estêvão Alvarenga,
Jooyoung Jeon, Ran Li, Fotios
Petropoulos, Hokyun Kim, Kwangwon
Ahn [65]

Hourly electricity consumption series,
Deseasonalized demand time series,
Historical demand observations

Probabilistic load forecasts 60% (Error Red.) [short term]

ARMA-GARCH (Autoregressive
Moving Average - Generalized
Autoregressive Conditional
Heteroskedasticity) model

2024 Yaohui Huang, Yuan Zhao, Zhijin
Wang, Xiufeng Liu, Yonggang Fu [53]

Historical heat load records,
Meteorological factors, Exogenous
factors

Future heat oad values, Forecast of
time steps ahead 23.5% (RMSE) [short term] Sparse Dynamic Graph Neural

Network (SDGNN)

2024

Lionel P. Joseph, Ravinesh C. Deo,
David Casillas-Pérez, Ramendra
Prasad, Nawin Raj, Sancho
Salcedo-Sanz [9]

Meteorological variables, Attributes
used as predictors, Ground level data,
Satellite based climate variables

Hourly wind speed forecasting 99.5% (Index) [short term]

3 Phase hybrid model: 3P-CBiLSTM 1.
TMGWO (Mutation Grey Wolf
Optimizer) for feature selection 2.
BOHB (Hybrid Bayesian Optimization
and HyperBand) algorithm for
hyperparameter optimization
3. CBiLSTM

2025 Ali Amini, Samuel Rey-Mermet, Steve
Crettenand, Cécile Münch-Alligné [66]

High-frequency experimental
data,Low-frequency SCADA data,
Physics-based parameters, Engineered
features

Instantaneous Power 99% (R2) [real time]
physics-based analysis and data-driven
(machine learning) approach

2025
Emrah Dokur, Nuh Erdogan, Ibrahim
Sengor, Ugur Yuzgec, Barry P.
Hayes [38]

Time series of active power
measurements, Time series of reactive
power measurements, Past voltage
values

Forecasted node volatage 0.56% (Avg. Dec.) [near real time]
It combines Extreme Learning Machine
(ELM) with Single Candidate
Optimizer (SCO)

2025

Weikun Deng, Hung Le, Khanh T.P.
Nguyen, Christian Gogu, Kamal
Medjaher, Jérôme Morio, Dazhong
Wu [67]

Raw sensor data, Continuous
time-series data, Temperature data

Remaining Useful Life (RUL)
prediction for fast-charging lithium-ion
batteries

8.4% (MAPE) [long term]

Data driven branch: Dilated
Convolutional Neural Network
(D-CNN) Physics-informed branch:
Neural network that uses
physics-embedded algorithm structure
Features from both branches are
merged and processed by a Full
Connectivity Neural Network (FCNN)
in the final output layer

2025 Hui Song, Boyu Zhang, Mahdi Jalili,
Xinghuo Yu [68]

Energy demand data, Temperature
data Energy demand forecasting 5.8% (RMSE) [short term] Multi-swarm Multi-tasking Ensemble

Learning (MSMTEL)
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Figure 2. Frequency of top 10 hybrid model components used in load profile prediction literature
(2011–2025).

Figure 2 summarized the ML models for load profile prediction. Table 6 summarizes
the key strengths and weaknesses of the ML models to provide a structured comparison of
the effectiveness in different applications. Convolutional Neural Networks (CNNs) offer
high efficiency in extracting local features and inherent structures from time-series data,
making them parameter-economical, though they are inherently restricted by their fixed
temporal receptive field and rigidity to sequence length. The Long Short-Term Memory
(LSTM) variants, including Bidirectional LSTMs (Bi-LSTMs), are crucial for time-series
analysis, as they are specifically designed to learn and retain long-term dependencies,
overcoming the vanishing gradient problem. Although Bi-LSTMs improve learning effec-
tiveness by incorporating context from both past and future data, their complex “black-box”
nature is a significant drawback, necessitating explicit explainable intelligence measures to
ensure model transparency.

To understand composite methodologies, hybrid models are classified on two primary
dimensions such as architecture and functionality.

1. Architecture defines the structural integration of components:

(a) Series (Sequential): These models operate in a pipeline wherein the output
of one module serves as the input for the next. This structure is designed to
improve the data quality prior to learning [9,62].

(b) Parallel (Ensemble): “Ensemble methods” or “ensemble learning”, where
multiple models run in parallel and their predictions are aggregated (bagging,
boosting, stacking). These models emphasize on variance reduction, improved
generalization, and combing multiple base learners via averaging, voting,
or stacking meta-learners [1,6].

(c) Embedded (Optimization): These models integrate a meta-heuristic optimiza-
tion algorithm (e.g., GA, PSO) directly into the learning process of a predictor
to automatically tune hyperparameter or weights [4,11].

2. Functionality describes the logic behind the combination:

(a) Decomposition-based: Models that first decompose the original signal into
a set of simpler subseries (e.g., modes, frequency bands, trends) using tech-
niques such as WT or VMD and then learn based on these components or
their recombination to handle the complex oscillatory behavior more construc-
tively [14,62].
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(b) Feature fusion-based: Models that integrate heterogeneous feature extractors
and combine their latent representation through concatenations via attention
or learned weighting into a unified feature space that is passed to a down-
stream predictor, aiming to capture complementary aspects of the data such as
spatiotemporal structure (e.g., instead of standard CNN-LSTM combination,
Graph Attention Networks (GAT) combined with TCN could be utilized) [14].

Table 6. Strengths and weaknesses of model types mostly used in hybrid setting for predicting
sequential load profiles.

Model Type Strength Weakness

CNN They excel in extracting hidden
structures and inherent features
from time-series data, to improve
learning efficiency and reduce the
number of parameters [9,31].

They are fundamentally limited
to temporal receptive field, de-
structive flattening in hybrid se-
tups, and rigidity with sequence
lengths [1].

LSTM It is designed to overcome the van-
ishing gradient problem of tradi-
tional RNNs and learn and retain
long-term dependencies in tempo-
ral sequences [2,3,6,31].

While effective they are limited to
pre-processing information in a sin-
gle direction, meaning they have
the capacity to miss out on perti-
nent information [9].

BiLSTM They improve upon standard
LSTMs by being able to process
information in both forward and
backward directions, which facili-
tates the effective learning of due
to dual information flow character-
istics [1,9,14].

Due to their complex architecture,
they are non-interpretable “black-
box” models, which require ex-
plainable intelligence to increase
model transparency [1,9,14].

RF Pombo et al. (2022) explicitly
state that RF required 1–3 h for
training compared to 12–35 h for
hybrid CNN-LSTM models [3].
Joseph et al. (2024) stated that tree-
based models generally offer bet-
ter short-term accuracy then phys-
ical or statistical models [9].

Tree-based models “perform
poorly when extrapolating outside
the range of the training data” [9].

Ensemble Khan et al. (2020) argue that en-
semble learning allows weak clas-
sifier to correct each other’s mis-
take, resulting in a stronger super-
vised model [6]. Ensembles reduce
the risk of selecting a single model
with systematic bias errors [31].

Ensembles increase computational
costs because multiple base models
must be processed in parallel [31].

As an example, the Table 7 summarize the relative hybrid architectures and the
functional reasoning that supports their integration.
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Table 7. Hybrid architecture and functional logic.

Model Type Hybrid
Architecture

Functional Logic

PCLA
(Parallel CNN-LSTM Attention [1]

Parallel
(Ensemble)

Extracts spatial (CNN) and temporal (LSTM) features
simultaneously in parallel branches to capture spa-
tiotemporal characteristics before fusion.

Physics-Informed
(PV model + RF/SVR/ANN) [3]

Series
(Sequential)

Feature fusion with physics-based variables is
achieved by concatenating raw meteorological data
with derived quantities from a PV performance model
prior to training ML models such as RF.

GA-LSTM [4] Embedded
(Optimization)

Integrates GA to optimize the number of time lags
and hidden layers for LSTM model.

MSC-PSO-SVR [11] Embedded
(Optimization)

Integrates a new technique called multi-space collab-
oration (MSC) framework with Particle Swarm Op-
timization (PSO) to tune Support Vector Regression
(SVR) parameters, preventing local optima.

SWT-TTGAT-GTC [14] Series
(Sequential)

Pipeline applies SWT for denoising and improving
data quality, followed by graph attention (spatial) and
gated temporal convolution (temporal).

ELM-SCO [38] Embedded
(Optimization)

Embed the SCO algorithm to optimize the initial
weights and biases of an ELM to prevent overfitting.

Attention based CNN-LSTM-BiLSTM [45] Series
(Sequential)

Operates in a feature fusion pipeline such that CNN
extracts features, an attention block assigns weights,
and LSTM-BiLSTM forecasts the load.

SDGNN [53] Series
(Sequential)

A pipeline that constructs a sparse dynamic graph,
enhances spatio temporal memory via convolution,
and fuses features for global forecasting.

CNN-BiGRU Attention (Multi-task) [58] Parallel
(Ensemble)

Uses a hard weight sharing mechanism for multi task
learning to share coupling information among cool-
ing, heat, and electrical loads, combined with feature
extraction.

VMD-CLSTM-VMD-ERCRF [64] Series
(Sequential)

Decomposition based pipeline where VMD decom-
poses data for a CNN-LSTM forecast; residual errors
are then decomposed and corrected by RF.

ARMA-GARCH [65] Embedded
(Optimization)

Error mitigation using GA to optimize the portfolio
(aggregation) of demand to minimize probabilistic
forecast error.

MSMTEL [68] Embedded
(Optimization)

Error mitigation using multi swarm PSO to optimize
knowledge transfer between tasks, followed by a PSO-
optimized weighted ensembles.

MCNN-SCAM-LSTM-MTL [63] Parallel
(Ensemble)

A hybrid attention mechanism combined to enable
separate extraction and unified fusion of features.
Uses a Multi-Column CNN to extract features fused
by SCAM.

3.2. Application in Grid Planning

Strategic integration of renewable sources in rural grid planning has proven essential
for resilience; for instance, hybridizing grid connections with biomass generators utilizing
local livestock waste can reduce grid dependencies by approximately 55% and lower carbon
dioxide and sulfur dioxide emissions by roughly 30% [69]. This is crucial for sequential load

https://doi.org/10.3390/en19020538

https://doi.org/10.3390/en19020538


Energies 2026, 19, 538 20 of 32

forecasting, which involves making continuous predictions for future time steps, mostly
with overlapping horizons, to support dynamic grid operations [16,70].

Effective demand side management is crucial, as electricity demand is projected to
increase substantially with electrification. Load forecasting models are essential for peak
load management and support Demand Response (DR) strategies by predicting high
demand periods [11,14]. This allows customers to shift their electricity needs to times
when the power is more abundant or the demand is lower [16]. A 1% reduction in the
MAPE value for short-term load forecast can save the utility company approximately USD
300,000 per year [16].

An example of sequential load forecasting that allows for comprehensive assessment
of forecast accuracy and reflecting real-world scenarios is the simulated production of
prediction of the next 24 h at each time step of the test data, rather than a single prediction
every 24 h. Medium-Term Load Forecasting (MTLF) ranges from a few months to 1 year,
useful for maintenance scheduling and financial evaluation [70]. Long-Term Load Forecast-
ing (LTLF) covers 1 year to 10 years or more, essential for the planning of power grids and
generators and future capacity expansion [70–72]. Therefore, the short-term to long-term
continuous nature of these predictions forms a sequential chain of forecasts that supports
the entire grid planning and operational cycle.

3.3. Adaptability Across Forecasting Horizons

The adaptability of forecasting models is intrinsically linked to the forecast horizon,
as the dominant stochastic factor driving load and generation variance change significantly
from minutes to years [13,31]. Forecast errors typically increase as the time horizon [13].
A critical synthesis of the literature reveals that no single architecture excels across all the
time scales; rather, model selection must align with the specific temporal characteristics
of the input features and the intended grid planning application [2,13]. An overview of
relationship between time scales, dominant model inputs, and recommended architectures
is summarized in Table 8.

1. Short-term and intra-hour horizons (real-time operations): In this domain, horizons
range from minutes to 48 h, model adaptability relies heavily on capturing high-
frequency fluctuations and rapid meteorological changes [31]. DL models, specifically
LSTM networks and CNNs, demonstrate superior adaptability due to their ability
to capture non-linear dependencies in volatile time-series data [1,9,13,14]. While
LSTMs like Time GPT perform, well in short-look-ahead scenarios, their performance
can degrade in longer horizons, often producing “conservative” forecast that fail to
capture peaks and valleys necessary for granular operational planing [1,2,36].

2. Medium-term horizons (Scheduling and maintenance): Spanning one week to
several months, in this horizon “catastrophic forgetting” of older patterns becomes a
risk for standard neural networks [4,31]. Techniques such as GA is used to optimize
time lags which has proven to be effective in prediction stability by identifying optimal
historical windows [31]. Accurate medium forecasts allow utilities to optimize unit
commitment and minimize reserve power requirements by predicting weekly load
profiles with lower variance [2].

3. Long-term horizons (Capacity planning): For horizons extending from one year to
decades, statistical and physical models often outperform pure ML approaches in
this domain because they simulate atmospheric dynamics and physical boundary
conditions, which may not account for long-term climate shifts [36]. However, recent
trends advocate hybridizing physical models with ML error correction to enhance
long-term validity [13,16,36].
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Table 8. Mapping time scales to model adaptability and grid planning applications.

Forecast
Horizon

Dominant
Input Feature

Recommended Model
Architecture

Key
Challenges

Intra-hour/ Short-term
(<1 h to 48 h)

Historical load, cloud mo-
tion, wind speed, temper-
ature [31,71,72].

DL and hybrid models
such as CNN-LSTM, BiL-
STM, Ensembles [1].

Minimizing latency in
data acquisition [3,45].

Medium-term
(1 week to 1 year)

Seasonal indices, calen-
dar events, temperature
trends [4,70].

Optimized RNNs such
as GA-LSTM and sta-
tistical methods like
SARIMA [4,31].

Ensuring stability and
avoiding overfitting to
short-term noise [4].

Long-term
(>1 year)

Macro economic indica-
tors, demographics, cli-
matological norms [13].

Physical statistical hy-
brid models [9,13].

Accounting for non-
stationary trends [13,63].

4. Discussion
This section outlines the findings of the review with respective to the RQs. First,

the input and output characteristics are analyzed, followed by evaluation of the applied
ML models and architectures. Subsequently, the implications for sequential load profile
prediction in electrical grid planning are derived, highlighting the current limitations and
promising future direction. By synthesizing these aspects, the discussion aims to bridge
theoretical insights with applicability in sustainable energy systems.

4.1. General Discussion

The research questions guiding the systematic literature review as mentioned in Table 1
are discussed. The key input drivers are categorized as time-series data, system specific
parameters, meteorological variables, and operational parameters emerge as essential for
enhancing prediction accuracy and robustness. By highlighting how these inputs are
transformed yet often under exploit dynamic integration, the analysis underscores the need
to decouple output length prediction from the core signal forecasting.

4.1.1. RQ1 (Input and Output Characteristics)

The inputs used can be categorized into four different data streams which serve as the
foundations of these models. The following are the inputs identified across the articles:

1. Time-series data: This type of data is crucial because electrical load is inherently
dynamic and influenced by factors that change over time. In the context of wind
power, historical wind speed data is used, from which the one day ahead wind power
target is derived using the power curve of specific turbines [9]. This historical wind
speed itself forms a time-series input. The raw time-series data can be transformed
using techniques such as Fast Fourier Transformation (FFT) to decompose the signal
into frequency components [3]. This transformation also enhances the diversity of
the inputs for ensemble learning [26]. In terms of historical energy consumption data
both from renewable and non-renewable sources, the raw data can be aggregated into
a single total energy consumption series, where the model leverages rich temporal fea-
tures directly from the date time index of the collected data, allowing ML algorithms
to learn and forecast energy consumption patterns based on time-specific variations
like hour, day of the week, and year. This approach highlights the time-dependent
context in which load occurred for accurate forecasting [6].

2. System specific data: This category encompasses parameters and specifications
unique to the physical and operational characteristic of the power system and asso-
ciated technologies. These involve core electrical variables such as voltage, current,
active/reactive power, system topology, and fault data [8]. Inputs such as cell tem-
perature, solar irradiance, and efficiency are crucial when modeling systems with
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solar integration. Instead of relying solely on physical measurements, some models
use a mathematical representation (e.g., the single-diode model) to generate high-
quality datasets. These datasets enable accurate offline training of ANNs to predict
the maximum power point under varying conditions [2,30,41].

3. Meteorological data: It plays a pivotal role, particular in systems that incorporate
renewable energy sources such as solar and wind power. Meteorological data is
not only diverse but also exhibits high spatial and temporal variability, meaning
same model may perform differently across regions or over time due to changing
climate conditions. Solar irradiance and Global Horizontal Irradiation (GHI) are
critical variables for Photo Voltaic (PV) power forecasting, which provides insights
into potential solar energy available at a given location and time [48].

4. Operational parameters: It provides essential insights into the functioning, config-
uration, and temporal context of the system being modeled. An example where
the inputs capture design specific and runtime characteristics of a Power Delivery
Network (PDN) and in context of the ANN model, it includes Target Impedance (TI)
which defines the PDN performance threshold, influencing how the ANN assesses
design adequacy. Another input which represents the placement values of capacitors
on the Printed Circuit Board (PCB), either integrated via ring or detailed grid and
rectangular sector methods to enhance model performance is Decoupling Capacitor
(Decap). Thus, the inputs are synthetically generated using physics-based simula-
tions, enabling the ANN to predict whether a given PDN design will violate its target
impedance. Abstracting spatial data through sector-based pre-processing significantly
improves prediction accuracy, demonstrating the importance of a thoughtful input
representation [51].

In forecasting models, the output characteristics are fundamentally determined by
how the prediction length is handled, primarily falling into two important concepts: static
and dynamic output length. Table 9 provides a clear differentiation between these two
approaches and Figure 3 illustrates the forecasting horizons. Especially the identified
problem area is highlighted as gap. The Active Graph Recurrent Network (AC-GRN)
model, as presented in [61], operates primarily within the static forecasting framework in
its current implementation. The model is designed for multi-horizon multi-step district
heat load forecasting. This means it predicts heat demands across various predefined future
time periods, referred to as “horizons”, and provides multiple distinct predictions within
those periods, known as “steps”. A significant highlight of the paper, which serves as
a limitation and future scope towards dynamic forecasting, is that, despite its ability to
handle multiple predefined horizons and steps, the model applies a uniform output length
across all heat meters. This aligns directly with the “Fixed Length Model” characteristics of
static forecasting as described in Table 9.

The hybrid model addresses dynamic output length by engineering time-series fea-
tures, from multi scale consumption data, and then training its ensemble (MLP, SVR,
CatBoost) on flexible data partitions that reflect real operational scheduling, which enables
the model to adaptively predict across varying time horizons without preset limits; this
allows the system to continuously tailor and update its forecasting window purely based
on process demands and available contextual information, overcoming static constraints
through learned temporal flexibility [6].
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Table 9. Forecasting comparison.

Aspect Static Length Forecasting Dynamic Length Forecasting

Definition Predicts a predetermined, fixed
number of future time steps (e.g.,
from time t to t + L, where L is
constant across all instances).

Predicts a variable number of fu-
ture time steps (e.g., from time
t to t + y, where y adapts based
on instance specific factors like
component properties).

Parameter han-
dling

Assumes uniform or averaged
parameters (e.g., standard ma-
terial sizes, processing times)
across components.

Incorporate instance specific pa-
rameters (e.g., varying dimen-
sions, material quantities, or pro-
cess durations per component).

Data depen-
dency

Relies on generalized, aggre-
gated, or historical average data;
lesser need for fine grained de-
tails.

Relies on detailed, instance spe-
cific data (e.g., from simulations
or measurements for each com-
ponent).

Training data Require uniform length se-
quences (often achieved via
padding truncation if raw data
varies).

Natively handles variable length
sequences (modern approaches
use masking; classical method
may still pad/truncate).

Model approach Uses models with fixed output
dimensions (e.g., direct multi
step prediction with a static hori-
zon).

Uses adaptive models (e.g., auto
regressive with stop tokens,
encoder-decoder with dynamic
decoding, or masking in trans-
formers) which adjust output
length per instance.

Models 
(Forecasting load)

Non-linear Models Linear Models 

Artificial Intelligence

Machine Learning
Models 

Deep Learning
Models 

Shallow  Learning
Models 

Neural Networks 

Static length
forecasting 

Dynamic length
forecasting 

Problem Area 

Figure 3. Hierarchical classification of load forecasting models, identifying “Dynamic length forecast-
ing” domain as the primary research gap (highlighted in red).

Dong et al. [73] achieves dynamic output length by employing stochastic state space
models and uncertain basis functions, which use recursive filtering techniques such as
Kalman filtering and expectation maximization to continually update prediction parameters
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and outputs in real time as new data is observed: this adaptive approach allows the forecast
duration to shift and expand according to the behavior of solar radiation signals; thus, the
horizon is not pre-set but evolves based on dynamic state and real measurement context,
ensuring highly responsive and process specific forecasting for each time interval.

4.1.2. RQ2 (Improving Electrical Grid Planning)

The journey to improve electrical grid planning begins with understanding historical
trends, a task in which statistical models lay the foundation. Studies like Liu et al. (2010)
introduced ARIMA to forecast wind speed and wind power, providing operators with
a reliable method to schedule maintenance and plan infrastructure upgrades based on
seasonal patterns [15]. As grids grew complex with the integration of renewable energy,
the need for adaptive predictions led to the rise of ML models; Hong (2016) pioneered the
use of ANNs for probabilistic prediction of electrical loads [74].

The evolution continued with deep learning models designed to handle the intricate
real-time data of smart grids. Bouktif et al. (2018) [4] leveraged LSTM networks to construct
forecasting models for short to medium term aggregate load forecasting, and further
enhanced the performance by using a Genetic Algorithm (GA) to optimize key hyper
parameters such as time lags and the number of LSTM layers. An additional experiment
has shown that a CNN-LSTM neural network, where the CNN layer can extract features
between several variables affecting energy consumption, and the LSTM layer is appropriate
for modeling temporal information of irregular trends in time-series components [4].

The pinnacle of this progression is reached with hybrid models, which synthesize the
strengths of preceding approaches to tackle the multifaceted challenges of grid management.
Liu et al. (2010) blended wavelet transforms with Improved Time-Series Methods (ITSM)
and ARIMA to enhance wind power forecasting for small wind farms [15]. Osório et al.
(2014) advanced this with a Hybrid Evolutionary Adaptive Approach (HEA), integrating
Mutual Information (MI), Wavelet Transform (WT), Evolutionary Particle Swarm Optimiza-
tion (EPSO), and neural-fuzzy systems for short-term electricity prices prediction and wind
power prediction [62]. Khan et al. (2020) combined Multi-Layer Perceptron (MLP), SVM,
and Categorical Boosting (CatBoost), using Shapely Additive Explanations (SHAP)-based
feature analysis to optimize resource allocation for renewable and non-renewable energy
consumption [6]. Finally, Bouktif et al. (2018) applied LSTM-RNN hybrids with statistical
methods which have lower forecast errors in the challenging short to medium term electric
load forecasting problem compared to the best machine learning [4]. This narrative flow
from statistical foundations to hybrid innovations traces the progression and demonstrates
a robust and scalable path to improve electrical grid planning and management.

The challenge of separating output length predictions from the core signal prediction
is addressed not only by combining existing methodologies (hybrid models) but also by
deploying foundation models (Time GPT) and Physics-Informed Neural Networks (PINT)
that are designed to leverage learned knowledge or structural constraints to overcome data
scarcity and varying lengths and frequencies [2,36].

4.1.3. RQ3 (Performance Metrics)

Forecasting electrical loads is not merely a data problem; it is a strategic imperative
for grid reliability, sustainability, and operational efficiency [2,6,30]. This task is inherently
complex, which requires not only accurate predictions, but also meaningful metrics to
evaluate how well different models perform under various conditions. We focus on
the performance metrics used to evaluate forecasting models, explaining their meanings,
prevalence, and specific applications. We explore common metrics like Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), R² score, and Mean Absolute Percentage Error
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(MAPE), as well as rare metrics like binary classification accuracy, F1 score, and normalized
stability indices, to provide a comprehensive comparison of model performance [4,6,9,14,31]

Performance metrics quantify how well a model’s predictions align with actual load
data and help identify trade-offs between accuracy and computational complexity. MAE
measures the average absolute difference between predicted and actual load values, ex-
pressed in the same units as load (e.g., megawatts). It is intuitive and robust to outliers,
making it widely used for assessing point forecasts. Khan et al. (2020) employ MAE to
evaluate a hybrid ML model which forecasts dynamic energy consumption using histor-
ical load and time-series features [6]. MAE’s interpretability is valuable for comparing
model performance within a single dataset, but it does not account for the relative scale of
errors, which can be problematic when forecasting loads across diverse systems, such as
residential versus commercial grids [9]. RMSE is defined as the square root of the average
squared differences between predictions and actual; it emphasizes larger error due to its
quadratic formulation. This makes it sensitive to outliers, providing insight into model
consistency across volatile load profiles. Osório et al. (2014) employ RMSE to assess a
hybrid evolutionary adaptive model for short-term load-related forecasts, leveraging inputs
like historical load and weather data [62]. However, RMSE’s sensitivity to large errors can
lead to the double penalty effect, where models are penalized twice for phase-shifted peak
predictions, potentially discouraging accurate peak forecasting in volatile scenarios. R²
score or the coefficient of determination quantifies the proportion of variance in the actual
load explained by the model, ranging from 0 to 1. It is widely used for its scale-independent
nature, enabling comparisons across datasets with different load magnitudes [6].

Binary classification accuracy measures the proportion of correct predictions (true
positives and true negatives) in tasks where the output is categorical, such as predicting
whether a power delivery network violates a target impedance threshold. This metric
applies to evaluate an ANN model for power delivery network stability, using simulated
PCB design data with inputs like target impedance and port positions [51]. While intuitive,
accuracy can be misleading in imbalanced datasets, where a model may achieve high
accuracy by predicting the majority class (e.g., stable conditions) while missing rare events
(e.g., impedance violations). The F1 score, the harmonic mean of precision and recall,
addresses this limitation by balancing the trade-off between correctly identifying positive
cases (recall) and minimizing false positives (precision). It employs a related metric to assess
an LSTM-autoencoder model for anomaly detection. Thus, F1 score is particularly valuable
in imbalanced scenarios, such as detecting rare load anomalies or equipment failures,
where high recall ensures most anomalies are identified, and high precision reduces false
alarms [75].

Overall, the choice of model depends on the forecasting horizon, data complexity,
and constraints including data availability, computational resources, and interpretabil-
ity. Statistical models like ARIMA remain relevant for simpler linear datasets, but are
less effective for complex scenarios [76]. Traditional ML models like SVM and ANN
provide a practical balance of accuracy and efficiency, particularly when enhanced with
pre-processing techniques like PCA, which reduce the number of parameters and compress
the feature search space [3,31]. For short-term load forecasting, DL models, including LSTM,
can achieve the highest accuracy but require significant computational resources [4,42].
Hybrid computational frameworks show versatility across various applications, offering
robust performance for short- and medium-term forecasts. Future research should focus on
optimizing the computational efficiency of deep learning models and developing adaptive
hybrid frameworks to better handle the increasing data volatility and complexity inherent
in modern power systems.
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4.2. Trends and Advancements

Researchers are increasingly applying DL architectures such as Deep Neural Network
(DNN), Deep Belief Network (DBN), and RNN to forecast energy consumption in various
energy sectors [4,9,31]. An approach that allows a neural network’s output to be computed
via a black-box Ordinary Differential Equations (ODE) solver, propagating the network
through a continuous block of computation with infinitesimally small time steps, and pa-
rameterizing hidden layer dynamics using an ODE is a key advancement known as Neural
ODEs. Making continuous-time demand forecast model independent of time horizons and
addressing data inconsistency problems [77].

The emphasis on incorporating domain knowledge and physical laws into model
architectures has seen growth in forecasting models, leading to the development of Physics-
Informed Neural Networks (PINNs). It represent an advancement in scientific machine
learning by encoding model equations, such as Partial Differential Equations (PDEs),
as components of the neural network’s loss function. This allows them to solve forward
and inverse problems within a unified framework, often without the need for extensive
labeled data or fixed meshes [36]. Furthermore, Physics-Constrained Neural Networks
(PCNNs), which implement initial or boundary conditions via custom architectures, apply
domain decomposition. Continuous development focuses on optimizing activation func-
tions, training procedures, and addressing theoretical challenges such as convergence and
robustness to multiscale phenomena [78].

A major advancement in this area is the combination of MTL with GNNs, by interpret-
ing transformers as nodes in the graph. GNNs leverage message passing between nodes
to gain dependencies which standard neural networks might fail. The method proposed
by Dominik [79] uniquely combines Bayesian Multi-Task Embedding with the GNN ar-
chitecture, allowing a single model to predict for different transformers while capturing
their individual latent characteristics (e.g., load behaviors). Thus, this represents a trend
towards data-driven models to learn from topological and interactional complexities.

4.3. Gap and Challenges

Firstly, existing methods restricts the use of neural networks in dynamic prediction
because there is no established framework that successfully separates output length predic-
tion from core signal prediction. This paper introduces the first methodology to explicitly
decouple these two tasks, proposing the development of specialized dedicated models.
Secondly, the development of tailored, application-based accuracy metrics is crucial for
reliable integration of processes in industries. This enables targeted quality assurance, en-
hances end-user trust, and supports regulatory compliance, particularly as industries adopt
more complex, digital, and data-driven workflows. Developing forecasting architectures
introduces several challenges, a few which are outlined below:

1. Need for continuous adaptability: Models require continuous integration feedback,
handling variation in parameters, applications, and modalities in real time. When the
output length varies, the complexity is greatly amplified [80].

2. Handling irregularity: Models must handle these irregular length sequences without
relying on padding or truncation, which can obscure critical information or introduce
noise [81].

3. Balancing accuracy: Sliding window is one common approach in handling sequential
data in dynamic forecasting [81]. The comparative optimizations reveal that it is
a critical hyperparameter; for instance, expanding the window from 22 to 30 h in
hybrid RF and LSTM models was proven necessary to capture specific multi day
dependencies in non-stationary solar data [82].
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5. Conclusions
This review examines the evolution of electrical load forecasting, which traces the

trajectory from foundational statistical models to newly proposed DL architectures, identi-
fying RNNs as those with the best performance in temporal modeling. On the other hand,
they are still limited by the vanishing gradient problem as well as their inflexibility when
data is multivariate on different time horizons, and thus progressively evolved towards the
hybrid architectures, the most common being the use of CNNs to learn the spatial features
and the BiLSTM to learn from time-series data, which enables the modeling of the larger
range of complexities in modern energy systems.

Despite these advances, a major limitation of the state-of-the-art models is their in-
ability to generalize to other forecasting horizons without wide-ranging retraining. Most
proposed models fix the forecasting horizon as a hyperparameter that can be optimized a
priori and they are not easily adaptable to variable production and load duration in practice.
To address these limitations and enhance grid planning flexibility, future research must
focus on two specific actionable domains:

• Adapting to dynamic signal lengths: There are currently no algorithms for dynami-
cally adjusting the signal length in a manufacturing environment. Existing models
assume constant clock intervals regardless of varying load profiles. Additionally, MAE
or RMSE maybe unsuitable and misleading for these results when signals are irreg-
ularly sampled. Therefore, further work is needed to examine industrially relevant
metrics to best depict the results and their relevance for managing real-time industrial
grid applications, and demand response.

• Decoupling output length from signal prediction: In future work, the length of the
output of the model can be decoupled from the signal prediction task. The model
is able to predict how long the future predictions will be based on the length of the
forecast horizon. Therefore, two sub-modules for duration prediction and load shape
prediction can strengthen the overall algorithm.
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Abbreviations
The following abbreviations are used in this manuscript:

SLR Systematic Literature Review ANN Artificial Neural Network
ML Machine Learning kNN k-Nearest Neighbor
DL Deep Learning LLMs Large Language Models
LSTM Long Short-Term Memory FFT Fast Fourier Transform
GHI Global Horizontal Irradiation TI Target Impedance
PDN Power Delivery Network LR Linear Regression
PCB Printed Circuit Board Decap Decoupling Capacitor
SVM Support Vector Machine PCA Principal Component Analysis

GA Genetic Algorithm CL Cooling Load
FCNN Fully Connected Neural Network ACF Autocorrelation Function
MI Mutual Information ReLU Rectified Linear Unit
ELM Extreme Learning Machine TCN Temporal Convolutional Network
GTC Gated Temporal Convolution DES Discrete Event Simulation
CatBoost Categorical Boosting RBF Radial Basis Function
MLP Multi-Layer Perceptron MTL Multi-Task Learning
RNN Recurrent Neural Network GNN Graph Neural Network
SHAP SHapley Additive Explanations DBN Deep Belief Network
ES Exponential Smoothing ODE Ordinary Differential Equations
MA Moving Average RMLP Recurrent Multi-Layer Perceptron
AR Auto Regressive WT Wavelet Transform
SVR Support Vector Regression AC-RNN Active Graph Recurrent Network
FNOs Fourier Neural Operators NWP Numerical Weather Prediction
ITSM Improved Time-Series Methods CNN Convolutional Neural Network
BP Back Propagation DNN Deep Neural Network
MAPE Mean Absolute Percentage Error SPAR Semi-Parametric Auto Regressive
DR Demand Response VAR Vector Auto Regression
GRU Gated Recurrent Unit GRA Grey Relational Analysis
MOGA Multi-Objective Genetic Algorithm PCC Pearson Correlation Coefficient
PINNs Physics-Informed Neural Networks MAE Mean Absolute Error
EWMA Exponentially Weighted Moving Average MSE Mean Squared Error
GRNN Generalized Regression Neural Network RMSE Root Mean Square Error
PCNNs Physics-Constrained Neural Networks VMD Variational Mode Decomposition
HEA Hybrid Evolutionary Adaptive Approach ARMA Auto Regressive Moving Average
EPSO Evolutionary Particle Swarm Optimization MTLF Medium-Term Load Forecasting
SROCC Spearman Rank Order Correlation Coefficient LTLF Long-Term Load Forecasting
SDGNN Sparse Dynamic Graph Neural Network ARIMA Auto Regressive Integrated Moving Average

PRISMA
Preferred Reporting Items for Systematic
Reviews and Meta-Analyses

BiLSTM Bidirectional Long Short-Term Memory
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