da Silva Justino, Daniel Alexandre und Funke, Alexander (2025) Small Drone Detection from a Moving Camera using On-Device ROI Inference. In: 44th AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2025 (SCOPUS). 2025 AIAA DATC/IEEE 44th Digital Avionics Systems Conference (DASC), 2025-09-14 - 2025-09-18, Montreal, Canada. doi: 10.1109/DASC66011.2025.11257264. ISBN 979-8-3315-2519-4. ISSN 2155-7209.
|
PDF
- Nur DLR-intern zugänglich
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11257264
Kurzfassung
Enabling safe autonomy in unmanned aerial systems (UAS) requires the ability to detect small drones. This is challenging because small drones have a low signal-to-noise ratio (SNR), and limited resources on aerial platforms require lightweight detection models with low-resolution input. We propose an active tracking system that enhances small drone detection by using predictive region of interest (ROI) placement to focus inference resources prior to frame capture. To guide the ROI selection, an extended Kalman filter (EKF) predicts the target's state by incorporating past detections with the camera's own velocity and acceleration, compensating for ego-motion. This approach is evaluated on flight test data captured by a FLIR Firefly DL camera with a MobileNetSSD object detector. Results show an increase in average precision from 20.1\% to 67.0\% when compared to full-frame inference. We validate that predictive ROI tracking with ego-motion compensation enables small object detection on resource-constrained platforms.
| elib-URL des Eintrags: | https://elib.dlr.de/222278/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Small Drone Detection from a Moving Camera using On-Device ROI Inference | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2025 | ||||||||||||
| Erschienen in: | 44th AIAA DATC/IEEE Digital Avionics Systems Conference, DASC 2025 (SCOPUS) | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Nein | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.1109/DASC66011.2025.11257264 | ||||||||||||
| ISSN: | 2155-7209 | ||||||||||||
| ISBN: | 979-8-3315-2519-4 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Adaptive video subsampling, region of interest,object tracking, extended Kalman filter, edge AI | ||||||||||||
| Veranstaltungstitel: | 2025 AIAA DATC/IEEE 44th Digital Avionics Systems Conference (DASC) | ||||||||||||
| Veranstaltungsort: | Montreal, Canada | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 14 September 2025 | ||||||||||||
| Veranstaltungsende: | 18 September 2025 | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||
| HGF - Programmthema: | Komponenten und Systeme | ||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
| DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Unbemannte Flugsysteme | ||||||||||||
| Standort: | Braunschweig | ||||||||||||
| Institute & Einrichtungen: | Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge Institut für Flugsystemtechnik | ||||||||||||
| Hinterlegt von: | da Silva Justino, Daniel Alexandre | ||||||||||||
| Hinterlegt am: | 26 Jan 2026 12:29 | ||||||||||||
| Letzte Änderung: | 28 Jan 2026 11:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags