Yu, Peidong und Taghizadeh, Kianoosh und Feisel, Dorian und Ganguly, Saswati und Schröter, Matthias und Sperl, Matthias (2025) Simulating the 3D photoelasticity forward problem in order to generate training images for deep learning. In: 10th International Conference on Micromechanics on Granular Media, Powders and Grains 2025, 340, Seiten 10019-10022. Édition Diffusion Presse Sciences. 10th International Conference on the Micromechanics of Granular Media, Powders and Grains 2025, 2025-12-08 - 2025-12-12, Goa, Indien. doi: 10.1051/epjconf/202534010019. ISSN 2101-6275.
|
PDF
839kB |
Kurzfassung
Images of two-dimensional granular packings obtained using photoelastic particles and a polariscope setup have successfully revealed inaccessible information such as inter-particle contacts, contact force distributions and force chain structures. Reproducing this success for a three-dimensional granular system requires a tomography setup and becomes therefore significantly more difficult. Most importantly, there is no analytical mathematical solution to the problem to reconstruct the three-dimensional stress field from the acquired images. Using a neural network to numerically predict the stress field could be a promising way forward. Training the network requires a dataset connecting photoelastic images with the knowledge of the internal stress state of the sample those images are taken from. Because the latter is not experimentally accessible, we describe here the framework of how to create the training data by simulating the forward problem of photoelasticity numerically with the following steps: simulation of stress tensor distribution within each particle given the contact forces, and simulation of photoelastic response (i.e., fringe patterns captured by a camera).
| elib-URL des Eintrags: | https://elib.dlr.de/222258/ | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
| Titel: | Simulating the 3D photoelasticity forward problem in order to generate training images for deep learning | ||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||
| Datum: | 1 Dezember 2025 | ||||||||||||||||||||||||||||
| Erschienen in: | 10th International Conference on Micromechanics on Granular Media, Powders and Grains 2025 | ||||||||||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
| Band: | 340 | ||||||||||||||||||||||||||||
| DOI: | 10.1051/epjconf/202534010019 | ||||||||||||||||||||||||||||
| Seitenbereich: | Seiten 10019-10022 | ||||||||||||||||||||||||||||
| Verlag: | Édition Diffusion Presse Sciences | ||||||||||||||||||||||||||||
| Name der Reihe: | EPJ Web of Conferences | ||||||||||||||||||||||||||||
| ISSN: | 2101-6275 | ||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||
| Stichwörter: | granular matter, photoelasticity, machine learning | ||||||||||||||||||||||||||||
| Veranstaltungstitel: | 10th International Conference on the Micromechanics of Granular Media, Powders and Grains 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsort: | Goa, Indien | ||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 8 Dezember 2025 | ||||||||||||||||||||||||||||
| Veranstaltungsende: | 12 Dezember 2025 | ||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Frontier Materials auf der Erde und im Weltraum > Funktionale Granulate und Komposite | ||||||||||||||||||||||||||||
| Hinterlegt von: | Yu, Peidong | ||||||||||||||||||||||||||||
| Hinterlegt am: | 09 Feb 2026 09:08 | ||||||||||||||||||||||||||||
| Letzte Änderung: | 10 Feb 2026 13:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags