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Abstract. Images of two-dimensional granular packings obtained using photoelastic particles and a polariscope
setup have successfully revealed inaccessible information such as inter-particle contacts, contact force distribu-
tions and force chain structures. Reproducing this success for a three-dimensional granular system requires a
tomography setup and becomes therefore significantly more difficult. Most importantly, there is no analytical
mathematical solution to the problem to reconstruct the three-dimensional stress field from the acquired images.
Using a neural network to numerically predict the stress field could be a promising way forward. Training the
network requires a dataset connecting photoelastic images with the knowledge of the internal stress state of the
sample those images are taken from. Because the latter is not experimentally accessible, we describe here the
framework of how to create the training data by simulating the forward problem of photoelasticity numerically
with the following steps: simulation of stress tensor distribution within each particle given the contact forces,
and simulation of photoelastic response (i.e., fringe patterns captured by a camera).

1 Introduction

The experimental technique of photoelasticimetry has
been used to measure inter-particle contact forces in gran-
ular systems since 1950s [1]. The most prolific results
yielded by this technique are from 2D granular systems
consisted of disks made by photoelastic materials. In these
2D systems, the capability of measuring contact forces has
enabled investigations on force distribution [2, 3], jam-
ming transitions [4, 5], response to shear [6, 7], and dy-
namic behavior [8] of granulates. For 3D systems, fluo-
rescent imaging and X-ray diffraction methods have been
used to study contact forces [9, 10] from particle defor-
mation. Photoelasticimetry is nevertheless still desired for
its capability of measuring small forces with little defor-
mation. However, several experimental challenges are en-
countered in 3D: the production of spherical photoelas-
tic particles free of internal stresses, the need to index-
match those particles to avoid refraction, and the acquisi-
tion of tomographic data. There have been several qualita-
tive studies of 3D systems [11, 12]; most importantly Li et
al. have successfully addressed all experimental problems
and reconstructed the structure of the 3D force chains [13].

However, none of the existing 3D studies has reached
the ultimate goal of photoelasticimetry: the measurement
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of inter-particle contact forces. The underlying reason is
the lack of a mathematical tool to resolve the problem of
tensor-field tomography. In 2D, the assumption of a con-
stant stress tensor along the light path greatly reduces the
difficulty of solving the so called inverse problem: calcu-
lation of stress tensors and contact force from light inten-
sity data. For 3D systems, X-ray diffraction technique has
been used to measure In 3D, this assumption no longer
holds. Even provided with tomographic data of light in-
tensity from various directions, the current progress in the
mathematics community [14] still does not provide an an-
alytical or numerical solution of the inverse problem.

The recent progress of machine learning, on the other
hand, provides the option of performing 3D reconstruc-
tion from tomography data with the aid of deep learning
[15, 16]. It is therefore reasonable to expect that a prop-
erly trained neural network can also learn to solve the in-
verse problem of photoelasticimetry. The difficulty here is
to provide reliable input data (2D photoelastic images of
3D granular assemblies) and target data (the 3D stress dis-
tribution inside the particles) for the training. While the
input data can be gathered from tomographic experiments
with photoelastic particles, as shown e.g. in [13], there is
no alternative method known to simultaneously measure
the stress data.

The way forward are therefore simulations, which can
perform all steps necessary to generate a full set of train-
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ing data: (1) calculate contact forces of a packing of parti-
cles, (2) calculate stress distribution inside a particle given
the contact forces, and (3) calculate the light intensity of a
photoelastic image of the packing at an arbitrary direction
given the stress distribution in each particle. Together, the
three steps form the solution of the forward problem which
is needed to train a network to solve the inverse problem.

For the first step, existing software tools have enabled
many simulation works, e.g. [17]. In the current work
we focus on the last two steps. In the following sections,
we introduce first the Finite Element Method (FEM) sim-
ulation to retrieve stress data, and then the photoelasticity
theory needed for photoelastic calculation, and eventually
the photoelastic simulation tool to generate example train-
ing images.

2 FEM simulation of stress data

To obtain stress propagation between two elastic spherical
particles in contact, an FEM simulation is conducted us-
ing the commercial software Abaqus/CAE [18]. To sim-
plify the geometry, we examine the equivalent problem of
contact between rigid flats and an elastic particle. Taking
advantage of symmetry, the sphere was modeled by a half
circle with a diameter of d=10 mm, compressed between
two analytical rigid flat surfaces. This model improves
the computational efficiency significantly and allows a 2D
axisymmetric simulation [19]. The particle is assumed to
be homogeneous and isotropic following linear elastic ma-
terial response with Young’s modulus £ = 1.2 MPa and
Poisson ratio v = 0.49.

A compressive force, F = 1 N, is applied to a refer-
ence point. Movement of the reference point is coupled
with the top flat surface which results in a uniform force
applied on the top of the sphere. No constraint is imposed
in the radial direction on the top edge to allow radial ex-
pansion as it would naturally occur in uniaxial compres-
sion. The nodes of the bottom flat are fixed in all direc-
tions to model the rigid flat. The nodes on the symmetry
axis, z—axis, of the sphere are fixed in the radial direction
to model a sphere. Contacts are modeled as frictionless in
the tangential direction and hard in the normal direction
(the tangent modulus and the friction coefficient assumed
as zero). A mesh refinement study is conducted, leading to
a mesh of 16,769 CAX4RH (4-node bilinear axisymmet-
ric quadrilateral, reduced integration, hourglass control)
elements used to discretize the sphere, with significantly
increased mesh refinement along the curved contact edge
where contact occurs. The mesh far from the contact edge
became coarser to improve computing speed. The mesh
and boundary conditions used are shown in Fig. 1(a).

Due to the contact nonlinearity and large deformation
at the contact points, a large deflection was activated dur-
ing the simulation. The simulation validation in the limit
of small deformation was carried out in comparison to
Hertzian law. The results (not shown here) compare well
with the Hertz elastic solution with an error less than 1%
[19]. Thanks to the symmetric nature of the problem, a
3D sphere is generated by rotating the 2D axisymmetric
model 360°. Fig. 1(b) shows the z— component of stress

tensor at the end of the simulation. Highest and lowest
compressive stress in the sphere are marked in blue and
red color respectively.

Figure 1. (a) Finite element mesh and boundary conditions used
for the simulation of spherical elastic particle between rigid flat
surfaces/plates. (b) The z—component of the stress tensor o,
within the 3D sphere compressed under force F = 1 N.

3 Theory of integrated photoelasticity

In photoelasticimetry, a beam of light acts as the probe to
the photoelastic particles of interest. Given that no refrac-
tion happens when the light enters or exits the boundaries
of the particles, the polarization state of the probing light is
affected by the stress distributed along its straight path due
to the photoelastic effect (thus more precisely also called
stress-birefringence). By using a device called the polar-
iscope, the polarization state of the outgoing light, which
carries the stress information along its path, is converted
to the light intensity of a photoelastic image pixel.

For light beam propagating along the z axis, the Jones
vector of the beam E = (E,, E,, 0) follows the Maxwell’s
equation for birefringent materials:
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where &;; is the 2D dielectric tensor of the birefringent ma-
terial. For photoelastic (stress-birefringent) materials, &;;
depends on the 2D stress tensor ¢7;; and follows the con-
stitutive relation:

3
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By rotating the x and y axes and diagonalizing, the dif-
ference of the principle values of the two tensors can be
related in a simplified fashion:

g1 —& =Ci(o —02). 3)

Here C;, C, and C5 are material constants. The angle of
this rotation ¢ defines the secondary principle axes (SPA).



EPJ Web of Conferences 340, 10019 (2025)
Powders & Grains 2025

https://doi.org/10.1051/epjcont/202534010019

Eq. 1 can also be simplified along the SPA. Further-
more, using Eq. 3, we have:
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where C is the stress-optic coefficient determined by C;
and C,. Here B; is the mathematical transformation of E;,
the Jones vector along the SPA, and retains its polariza-
tion information. In other words, the phase retardation A
between B; and B, if solvable from Eq. 4, is the key quan-
tity needed to calculate the final intensity of the outgoing
light.

Figure 2. (a) Incident polarised light represented by the Stokes
vector S passing through birefringent material divided into vox-
els. Each voxel represents a uniform stress state and therefore a
single Miiller matrix M, (b) the discretization of a particle into
multiple voxels.
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M does only depend on the phase retardation A and the
angle of the SPA ¢, as described in the previous section.

A = C1(62)(c — o)) (6a)

¢ = arccos (Ul_' él ) (6b)
[o1]

In 3D, they can be calculated in terms of the eigenvalues
0';:]’2 and respective eigenvectors 0;=;, of a local stress
tensor defined as a 2D cross-section of a stress ellipsoid
cut by the x-y plane (z axis being the light propagation

In the 2D case, o; is a constant tensor along the light
path, which leads to the facts that oy and o, are both con-
stants, while Z—f = 0. Eq. 4 yields the so-called Wertheim
Law: A = Cy(01 — 02)dz,, where 6z is the distance that the
light beam has traveled along z axis, i.e., the thickness of
the 2D photoelastic disk.

In the 3D case, o;; generally changes along the light
path. Therefore, ooy = 01(2), 0» = 02(2), and fi—f # 0.
To be able to calculate the integrated photoelastic effect,
one can divide the light path into small segments. The
segment must be small enough such that, within one seg-
ment, oy — 0 and ¢ can be considered as a constant and
the conditions explained for the 2D system can be utilized
here. Given the initial polarization state and the stress dis-
tribution within the particles calculated by FEM from the
previous section, the change of the polarization state can
be calculated in each segment using the Wertheim Law
with 6z now being the length of the segment. After this
calculation in one segment after another until the last one,
the final polarization state can then be used to obtain the
photoelastic image pixel intensity.

For a more in depth discussion of the theory of in-
tegrated photoelasticity, readers should refer to reference
[20].

4 Simulation of photoelasticity

Figure 2 (a) illustrates the calculation of the polarization
state of two or more segments on the light path in 3D case
described in the previous section. Here, instead of using
the Jones vector, it is more convenient to adopt the Stokes
vector S which has 4 components that completely describe
the polarization state.

If S;, and S, represent the light beam before and after
passing through the segment, the 2D photoelastic effect
applicable within the segment can then be described by
Sour = M - S;,. The 4 X 4 matrix M is called the Miiller
matrix:

0 0
(1 —cosA) sin2¢ cos2¢ —sinA sin2¢ )
sin® 2¢ + cos?2¢ cos A sinA cos2¢
—sinA cos2¢ cos A

direction as established in section 3) and ¢, is a unit vector
along its x-axis.

For computing the final Stokes vectors that include the
information about the light intensity of that specific light
ray, we use a 3D voxel grid as shown in Figure 2 (b). In
each of these voxels, we assume a constant state of stress
obtained by interpolating the nearest stress tensor values
from the FEM results. This discretization allows us to cal-
culate the Miiller Matrix for each voxel using Equations
6 and 5. Consecutive multiplication of the Stokes vector
with the Miiller Matricies of the voxels along one light
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ray yields the brightness of this ray. This brightness cor-
responds to the intensity of one single pixel in the final
image. By repeating this process for all the rays and com-
bining the pixels, we create a photoelastic image such as
the ones shown in Fig. 3.

small force

large force

Figure 3. Examples of different images created with our simu-
lation of photoelasticity. The particle is loaded diametrically (as
shown in fig. 1) along the polar axis (polar angle = 0°) and
viewed from different ¢. The top row has a small loading force
and no fringe appears, while the bottom row has a larger force
leading to visible fringe patterns. Each image has 151 pixels
and is computed from a grid of 1513 voxels.

Figure 3 shows that the the FEM simulation described
in section 2 allows for an arbitrary choice of the contact
force value. This enables us to control the existence and
number of fringes in the photoelastic images.

Additionally, by changing the origin and the direction
of the rays as well as rotating the voxelized sphere, we can
observe the sphere from different viewpoints, as shown in
Figure 3, where three different viewpoints (specified by
different polar angles ) for two diametric load forces are
presented. Here the azimuth angle ¢ does not affect the
outcome.

In summary, using the techniques described in this
work, photoelastic images of compressed granular sam-
ples can be examined from arbitrary observation angles.
By changing the underlying FEM simulation, arbitrary
particle configurations can be created. While we only
present images created using a circular polariscope, the
switch to a linear polariscope setting requires little effort.
Besides fulfilling an educational purpose, this framework
can be used to train a neural network to solve the inverse
problem of recovering the 3D force configurations within
the sample, as we will report in a future publication.
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