elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Comparative Analysis of Deep Learning-Based Stereo Matching and Multi-View Stereo for Urban DSM Generation

Fuentes Reyes, Mario und d'Angelo, Pablo und Fraundorfer, Friedrich (2024) Comparative Analysis of Deep Learning-Based Stereo Matching and Multi-View Stereo for Urban DSM Generation. Remote Sensing, 17 (1), Seiten 1-23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs17010001. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
32MB

Offizielle URL: https://www.mdpi.com/2072-4292/17/1/1

Kurzfassung

The creation of digital surface models (DSMs) from aerial and satellite imagery is often the starting point for different remote sensing applications. For this task, the two main used approaches are stereo matching and multi-view stereo (MVS). The former needs stereo-rectified pairs as inputs and the results are in the disparity domain. The latter works with images from various perspectives and produces a result in the depth domain. So far, both approaches have proven to be successful in producing accurate DSMs, especially in the deep learning area. Nonetheless, an assessment between the two is difficult due to the differences in the input data, the domain where the directly generated results are provided and the evaluation metrics. In this manuscript, we processed synthetic and real optical data to be compatible with the stereo and MVS algorithms. Such data is then applied to learning-based algorithms in both analyzed solutions. We focus on an experimental setting trying to establish a comparison between the algorithms as fair as possible. In particular, we looked at urban areas with high object densities and sharp boundaries, which pose challenges such as occlusions and depth discontinuities. Results show in general a good performance for all experiments, with specific differences in the reconstructed objects. We describe qualitatively and quantitatively the performance of the compared cases. Moreover, we consider an additional case to fuse the results into a DSM utilizing confidence estimation, showing a further improvement and opening up a possibility for further research.

elib-URL des Eintrags:https://elib.dlr.de/222168/
Dokumentart:Zeitschriftenbeitrag
Titel:Comparative Analysis of Deep Learning-Based Stereo Matching and Multi-View Stereo for Urban DSM Generation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fuentes Reyes, MarioMario.FuentesReyes (at) dlr.dehttps://orcid.org/0000-0002-6593-5152NICHT SPEZIFIZIERT
d'Angelo, PabloPablo.Angelo (at) dlr.dehttps://orcid.org/0000-0001-8541-3856NICHT SPEZIFIZIERT
Fraundorfer, Friedrichfriedrich.fraundorfer (at) tugraz.atNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:24 Dezember 2024
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.3390/rs17010001
Seitenbereich:Seiten 1-23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:disparity estimation; depth estimation; urban reconstruction; digital surface models (DSMs); confidence estimation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: d'Angelo, Dr. Pablo
Hinterlegt am:19 Jan 2026 14:07
Letzte Änderung:23 Jan 2026 17:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.