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Abstract: The creation of digital surface models (DSMs) from aerial and satellite imagery
is often the starting point for different remote sensing applications. For this task, the two
main used approaches are stereo matching and multi-view stereo (MVS). The former needs
stereo-rectified pairs as inputs and the results are in the disparity domain. The latter works
with images from various perspectives and produces a result in the depth domain. So far,
both approaches have proven to be successful in producing accurate DSMs, especially in
the deep learning area. Nonetheless, an assessment between the two is difficult due to the
differences in the input data, the domain where the directly generated results are provided
and the evaluation metrics. In this manuscript, we processed synthetic and real optical
data to be compatible with the stereo and MVS algorithms. Such data is then applied to
learning-based algorithms in both analyzed solutions. We focus on an experimental setting
trying to establish a comparison between the algorithms as fair as possible. In particular,
we looked at urban areas with high object densities and sharp boundaries, which pose
challenges such as occlusions and depth discontinuities. Results show in general a good
performance for all experiments, with specific differences in the reconstructed objects. We
describe qualitatively and quantitatively the performance of the compared cases. Moreover,
we consider an additional case to fuse the results into a DSM utilizing confidence estimation,
showing a further improvement and opening up a possibility for further research.

Keywords: disparity estimation; depth estimation; urban reconstruction; digital surface
models (DSMs); confidence estimation

1. Introduction
The task of generating DSMs is a first step in many remote sensing pipelines. Data

from different sensors and platforms (usually aerial or satellite) can be used as input
for this task, like images from traditional cameras, LiDAR or synthetic aperture radar
(SAR). For this manuscript, we focused on the case where a DSM is created from optical
imagery only, as this is often cheaper than the other sensors and offers sharp geometry for
the reconstruction.

Currently deep learning based algorithms are state-of-the-art, however, many of these
depend on supervised learning methods and a requirement for that is the availability of
ground truth for training, which is still measured with LiDAR. This data acquisition is
expensive and the quality of the ground truth depends on the density of the generated
point cloud. Despite this issue, learning models have the advantage of being trained on a
subset of data and tested on many other samples, so the ground truth is just required for the
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training step, allowing the model to predict in many unseen samples. While the algorithms
achieve in general a good reconstruction, their performance can be even improved by
finetuning in some samples of the target dataset to reduce the domain gap (if any).

After obtaining a good dataset capable of training deep learning models, most existing
network architectures are oriented towards either stereo matching or MVS approaches.
While both are suitable for generating a DSM, they are based on different principles and
therefore require different input data and network architectures.

The stereo algorithms require data that has undergone epipolar rectification, which
means that the points to be matched are along the same epipolar line and we only consider
candidates in one dimension. To calculate the height of objects in the scene, the baseline
between the two images, the focal length of the camera, the position/orientation of the
stereo array and the computed disparity map are needed.

MVS on the other hand does not need stereo rectified images, as it supports images
from different points of view. Nonetheless, the correct relative position/orientation between
the cameras is required for a homography warping. The algorithms estimate a depth map
that can be converted into a height map based on the reference view position and rotation.

As deep learning architectures have evolved and achieved the best performance in the
benchmarks, the differences between the two algorithms have become more pronounced.
Datasets are designed separately for each case, as well as metrics and benchmarks. We
already set the first experiments to evaluate both stereo and MVS algorithms in stereo
paired images in our previous work [1], but we now explore multiple views and also test
all the algorithms on real data. We use the available datasets SyntCities [2] and Dublin
2015 [3], where synthetic and LiDAR ground truth is available respectively. The aim was to
make the comparison as fair as possible. This would highlight the differences between the
algorithms. Metrics for all cases and discussions are presented for all the obtained results.

In the traditional pipelines for DSM generation, a set of candidate values is available
for each pixel/location, which are later fused by using the median to determine a robust
final value [4]. In practice, stereo methods are more widely used in remote sensing as
they have been studied longer, just few pre-processing steps are needed and the matching
works only along one dimension. MVS methods require less pre-processing steps and
might benefit from the information provided by additional views, but they have been less
studied. Deep learning algorithms are more robust in terms of matching, so MVS may
achieve similar or better results than rectified stereo matching, despite its widespread use.

We explored beyond the traditional fusion, by using a confidence estimation which
could help to pre-select the best candidate values before fusion. The confidence estimation
responds to one of the remaining issues of deep learning, the fact that there is a prediction
for each pixel, whether this is a reliable one or not. The confidence estimation aims to
give a value related to this certainty, which we use to sort the available height values
used to be fused in the DSM. Although the improvement in the DSM accuracy is small,
the experiments show that there is potential for further research in this direction.

Summarizing, our main contributions are:

• A fair comparison of learning-based stereo and MVS methods while using multiple
views/stereo-pairs for the same region.

• We evaluate the algorithms in synthetic data, where the ground truth is highly accurate
and on the real images, as an application case with challenging regions.

• We explore an alternative way to fuse the height values into a DSM by using the
confidence associated to each prediction made by the neural networks.

• We share the processed Dublin dataset [3] to have a large dataset compatible with
stereo and MVS algorithms (The processed Dublin dataset can be downloaded at:
https://zenodo.org/records/12772927, accessed on 20 December 2024).

https://zenodo.org/records/12772927
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2. Related Work
In this part we describe some of the main algorithms and neural networks applied to

the tasks of stereo matching and MVS highlighting their differences. Besides, we introduce
some available algorithms for the confidence estimation in the stereo matching case.

2.1. Stereo Methods

Prior to deep learning solutions, stereo algorithms were mostly based on a cost volume
generation pipeline and its refinement to produce smooth results. Usually the steps for
stereo estimation are matching cost computation, cost aggregation, disparity estimation
and disparity refinement [5]. A widely used algorithm for stereo matching is Semi-Global
Matching (SGM) [6], which can be implemented also to work in real-time due to its
compromise between efficiency and accuracy. As it is the case with non-learning algorithms,
it can be applied to any pair of images without prior knowledge and produce a good quality
result. Nonetheless, the tuning of the penalty parameters has a strong influence on the
performance of the algorithm.

Recently, deep learning solutions have been the leading approaches for stereo match-
ing. MC-CNN [7] replaced the matching cost computation of the traditional pipelines with
a neural network and refined the computed cost volume with SGM to reduce the impact of
the remaining outliers, showing a good performance especially in terms of smoothness for
the computed disparity map. Later on, end-to-end networks were developed to predict
the disparity maps from the stereo images, learning also the refinement steps. The first
approaches were DispNet [8] with an encoder-decoder architecture and GC-Net [9] that
incorporated 3D convolutions. Among the architectures that are widely known and used
as a baseline to compare performance, we can mention GANet [10], AANet [11] and DSM-
Net [12]. GANet is a learning-based implementation similar to SGM, where the penalty
parameters are learned and 3D convolutions are used to refine thin structures. AANet
produces smooth results and avoids the expensive 3D convolutions using less memory
than GANet with a slight loss in accuracy. DSMNet on the other hand, tried to reduce the
domain gap by using a domain normalization.

Newer architectures benefit from more complex architectures. RAFT-Stereo [13] adds
gated recurrent units (GRUs) for a robust result in difficult areas, like textureless sections.
Besides, it is less affected by the domain gap problem. A different strategy is STTR [14],
where transformers are included and the network also alleviates the constraint of a fixed
disparity range. Unimatch [15] proposes a unified model able to address optical flow,
stereo matching and depth estimation. This network is based on transformers for feature
similarities instead of convolutional layers. EPNet [16] focuses on recovering small and
thin structures present in the images by using an additional encoder for edge preservation
and a coarse-to-fine strategy for the depth estimation. Selective-Stereo [17] introduces an
architecture including Selective Recurrent Units (SRUs) to recover finer details and capture
low-frequency information in smooth regions.

In our manuscript, we will use only AANet as this requires less time for train-
ing/inference than other networks, produces a good quality result, and is a common
baseline to compare new methods.

2.2. MVS Methods

The multi-view networks do not require the input images to be on the same epipolar
line and therefore allow the reconstruction to be based on multiple points of view. Such
a reconstruction takes place directly in the 3D space, so the predictions represent the
distance from the camera plane to the objects as in the traditional sweep plane algorithms.
In contrast to stereo methods, the MVS approaches require a estimated depth range as well
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as the relative camera positions and rotations values. MVS algorithms can use two or more
views, so it is important to specify how many of these are being used when implementing
the algorithm.

Non-learnable photogrammetric algorithms have been also developed for this task.
COLMAP [18] reconstruction benefits from multi-view geometric consistency, and its
algorithm to sort the additional views (with respect to a reference view) is used also by
deep learning solutions as a starting point. GIPUMA [19] applies an iterative process in the
3D space which is computed efficiently by using GPU resources.

Deep learning architectures have also been leading the MVS benchmarks in the last
years, especially in terms of completeness. MVSNet [20] is a pioneering work that imple-
ments the plane sweep algorithm in a learnable way. R-MVSNet [21] includes GRUs which
help to slightly improve the results. Another strategy is CasMVSNet [22], that follows a
coarse-to-fine architecture reducing the memory consumption and allowing higher image
resolutions. VisMVSNet [23] incorporates information related to the occluded pixels to rely
in visible pixels for a more robust reconstruction. RA-MVSNet [24] focuses on textureless
areas and complex boundaries by using both the depth and signed distance field (SFD) in
the cost volume. CL-MVSNet [25] adds two parallel branches in the network. The first
one is image-level and aims for better context awareness and the second is scene-level for
robustness regarding view-conditional differences. GeoMVSNet [26] includes geometrical
information from fine and coarse stages for a more robust prediction. It also applies a fre-
quency domain filter in the depth maps at different stages. GC-MVSNet [27] also highlights
the benefits of using geometrical information by adding a geometrical consistency loss.
UniMVSNet [28] has a depth representation that allows the network to consider both a
classification and a regression task simultaneously, leading to significant improvements
in the performance. On top of that, computational resources are less demanding than for
other networks. Therefore, we select UniMVSNet for the experiments in this manuscript.

2.3. Confidence Estimation

The confidence estimation is a research area that has been explored already in the task
of stereo matching. Given a disparity map, which is predicted with a neural network (or a
photogrammetric algorithm), the confidence estimation aims to give a value that is related
to the certainty of the prediction for each pixel in the result. This would be similar to some
post-processing steps applied in the stereo matching, such as left-right check consistency,
where according to the bilateral reprojection of the images using the disparity maps, some
disparity predictions are discarded due to inconsistencies.

As with the disparity and depth estimation tasks, the confidence can also be estimated
by learnable and non-learnable algorithms. Regarding the latter ones, one of the first
quantitative evaluations is shown in [29]. Most of the evaluated algorithms are based on
the cost volume used to estimate the disparity values. Confidence for each pixel can be
computed directly from the cost, by evaluating the curvature of the cost curve, analyzing
the presence and distribution of the local minima, the behavior of the whole cost curve or
by using the left-right consistency as already mentioned.

With respect to learned-based algorithms, a quantitative evaluation can be found
in [30]. These algorithms take as input the input reference image, the predicted disparity
maps and/or the cost volume, although the latter increases significantly the memory
consumption in the implementations. CCNN [31] was one of the first architectures designed
to predicted confidence maps by using Convolutional Neural Networks (CNNs) and
Fully Connected Networks (FCNs). Since this method did not use the cost volume as
input, it is more flexible to test in other stereo matching algorithms. PBCP [32] used a
patch based solution on maps predicted by SGM and significantly reduced the confidence
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prediction error. PKRN+ [33] included layers able to capture not only the information
for the computed pixel, but local context to estimate the confidence. In this way, regions
with similar confidence values are smoother. A different architecture [34] proposed to
use not only the disparity map, but the cost volume as input for the network. To reduce
the high computational cost of processing the entire cost volume, this volume is inverted
(to represent similarities instead) and only the highest matching candidates are selected
using the “top-k” operation from PyTorch. Finally, LAFNet [35] takes reference image,
disparity map and cost volume (with the same preprocessing as [34]) as inputs and includes
convolutional spatial transformers in the architecture, leading to a remarkable performance
between the state of the art solutions. Hence. we selected LAFNet for our experiments
related to the confidence-based estimation.

Since LAFNet requires the cost volume as input, we had to select a neural networks
that are based on a cost volume approach. The previously selected networks for disparity
and depth estimation, namely AANet and UniMVSNet were also chosen because their
cost volumes can be exported to be used as input for LAFNet. Although LAFNet has been
designed exclusively for disparity maps and no for the MVS case, we explored using the
depth maps with their respective cost volumes as input a in a similar manner to stereo data.

3. Datasets
As mentioned in the introduction, datasets for stereo and MVS algorithms have been

designed separately for each task, making it difficult to establish a common dataset to
assess the performance reconstruction of both approaches. To overcome this obstacle, we
decided to prepare two datasets for our experiments. First, we used SyntCities as in our
previous work [1], but instead of using only two views for all cases, we selected additional
views and different baselines. Second, we also evaluated the performance of the algorithms
on real data, so we processed the Dublin dataset [3] to be compatible with both approaches
and generated the required ground truth. Detailed information is given in the next sections.
We focused on aerial data as the resolution and quality of the ground truth help to evaluate
the ability to reconstruct finer details like small objects and sharp edges.

3.1. SyntCities Dataset

The SyntCities dataset is a synthetic dataset that was developed to compensate for the
lack of stereo paired data in the remote sensing field. Since these images are generated
directly from the 3D software Blender (v3.1) by using BlenderProc [36], the ground truth is
accurate and dense, which means we have a reliable reference value for all pixels. The images
have been rendered at a ground sample distance (GSD) of 10 cm, 30 cm and 1 m. In the
original setting, 4 pairs are given for the same area with different baselines. For the new
experiments, we benefit from the fact that despite having different baselines, all tiles with the
same naming number (based on the SyntCities file organization) are on the same epipolar
line. The SyntCities dataset assumes that the camera follows a flight track over the scene and
acquires the images at 25 locations; as those points act as the center for the stereo arrays, we
generated the stereo pairs by simply increasing the baselines. Hence, for each location we have
8 images along the epipolar line considering the left and right views (4 baselines × 2 views).
The selected testing samples have a GSD of 30 cm and 1 m and belong to the Venice and Paris
samples, as height differences are not so large in these cities.

In our experiments, we used a maximum of 6 views for each location. Due to the
camera parameters of the stereo pairs, all images cover approximately the same area on
the ground, as shown in the Figure 1, where all the cameras are pointing to a common
area. Assuming that we select VN (N ∈ [1, 6]) as the reference view, we have 5 additional
views to help for the reconstruction of VN . The distance between the cameras is given in
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the image as baselines with respect to V1. The cameras were not rotated nor displaced out
of the epipolar line. As SyntCities included ground truth only for the default stereo pairs,
we generated the missing disparity maps from the depth maps (available for all views) and
the camera parameters. Apart from that, no additional data is required.

Figure 1. Selected geometry for SyntCities samples. All images lie on the same epipolar line with
different baselines. There are 6 available views for each region on the surface. Baseline distances are
given with respect to V1.

3.2. Dublin Dataset

The Dublin dataset (The original Dublin dataset can be downloaded at: https://
geo.nyu.edu/?f%5Bdct_isPartOf_sm%5D%5B%5D=2015+Dublin+LiDAR, accessed on 20
December 2024) is a collection of data acquired on 2015 over the downtown of Dublin,
Ireland. The campaign had a flying altitude of 300 m and retrieved LiDAR data (as point
clouds and full waveform), oblique images, geo-referenced RGB and infrared imagery,
and the respective acquisition metadata.

As a first step, we downloaded all the point clouds and merged them to create a single
DSM, as the ground truth was later computed from it. The DSM was created with a GSD of
10cm and is shown in Figure 2. Due to the sensor acquisition not all the pixels will have
a ground truth, but for those where the value is defined, this is computed from a dense
measurement, offering a good quality ground truth. Since the reference DSM is calculated
from the original LiDAR point clouds, moving objects such as cranes may be measured in
more than one location. However, the density of such objects in the dataset is low.

We selected the georeferenced RGB imagery as input for our experiments. The original
images had a size of 9000 × 6732 pixels with a GSD of 3.4 cm. We downsampled the images
by ×9, changing the images to a size of 1000 × 748 pixels with a GSD of 30.6 cm, similar
to the one in SyntCities. With the downsampled size, it is also easier to use the images as
input for the neural networks without additionally cropping and merging the tiles for pre
and post processing.

The data was further processed for the two input cases: Dublin_stereo and
Dublin_MVS. A diagram for the applied pipeline is shown in Figure 3, where we have K
input images. In the case of the Dublin_stereo dataset, we selected a pair N of the K down-
sampled images, the pair had to be epipolarly rectified for stereo matching. For each image,
we selected the 5 closest acquisitions (based on the Euclidean distance of the positions) to
set the pairs. The epipolar rectification is done with the compact implementation described
in [37]. Once the pair has been rectified, we use a photogrammetric algorithm to convert
from the DSM to a disparity map, which is aligned to match the “left” image of the pair (so
the disparities have a positive range as required for the networks). Occlusions are handled
by utilizing a DSM with higher resolution than the images and keeping only points closest

https://geo.nyu.edu/?f%5Bdct_isPartOf_sm%5D%5B%5D=2015+Dublin+LiDAR
https://geo.nyu.edu/?f%5Bdct_isPartOf_sm%5D%5B%5D=2015+Dublin+LiDAR
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to the image. Hence, the stereo dataset includes pairs of rectified images with the respective
disparity ground truth. Two example data pairs of the Dublin_stereo dataset are shown in
Figure 4.

Figure 2. Dublin digital surface model obtained by merging all provided point clouds and used as
ground truth. Blue areas are low objects and red areas are high objects.

Figure 3. Pipeline used to generate the Dublin dataset for both cases: Dublin_stereo and Dublin_MVS.

With respect to the Dublin_MVS dataset, after downsampling the images, we pro-
cessed the camera values for positions and rotations from the metadata to be compatible
with the format required for the camera files in the MVS approaches, which includes camera
extrinsics, intrinsics and an estimated depth range where the scene is located. The depth
range is computed from the DSM, with a range that includes µ ± 4σ, being µ and σ the
mean and standard deviation of the depth values according to the camera parameters. This
range is different for each image. Note that the tiles used here have not been epipolarly
rectified (unlike Dublin_Stereo) and correspond to the original points of view.
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(a) Left A (b) Right A (c) GT A (d) Left B (e) Right B (f) GT B

Figure 4. Dublin_stereo dataset samples. (a,d) are the left views for the corresponding (b,e) right
views, (c,f) are the ground truth aligned with the left views. Bar scale for disparities is in pixels.

The depth ground truth is obtained in a similar way to the stereo case, where we used
the DSM and photogrammetric relations to convert the DSM into the depth map for each
image. As the depth map does not depend in the additional views, it is always the same for
a specific image and we do not need to provide ground truth for different image pairing.
Therefore, the MVS dataset includes the RGB images with the respective depth map and
camera file. An example of the images included in this dataset are shown in the Figure 5.

(a) Image A (b) Depth GT A (c) Image B (d) Depth GT B

Figure 5. Dublin_MVS dataset samples. (a,c) are the reference views for the corresponding
(b,d) ground truth. Bar scale for depth is in meters.

The Dublin dataset acquisition track has a different geometry to the one presented for
SyntCities. For the Dublin campaign, images are taking with a single camera along the
flight path. Therefore, the images cover different areas with some overlapping between
adjacent acquisitions. In the Figure 6 we show a simplified diagram of the camera positions
and ground coverage. A distance of approximately 100 m is given between two consecutive
images, leading to a forward overlap of ∼70%.

Figure 6. Selected geometry for Dublin samples. Images lay on a flight path with an approximate
baseline of 100 m, but not in the same epipolar line.



Remote Sens. 2025, 17, 1 9 of 23

Unlike the SyntCities case, in the Dublin dataset some regions are not visible in
adjacent input views, which makes the matching more challenging than for the synthetic
data. Moreover, the density of objects and textures in the Dublin dataset is larger, posing
additional difficulties for the reconstruction algorithms.

4. Methodology
In the following paragraphs we describe the process used to fuse the data (with and

without confidence guidance), as well as the training conditions of the applied stereo
and MVS networks. For the MVS network, we considered two cases, applying it as a
stereo matching algorithm (which means many input stereo pairs) and as a full multi-view
algorithm (where many views are taken simultaneously as input). Hence, we analyzed
three cases, namely: Stereo, MVS_Stereo and MVS_Full. For a clear explanation of the
difference between the last two, please see Section 4.4.

It is relevant to explain the reasons why we specifically selected AANet and UniMVS-
Net for our experiments. We already mentioned some arguments, namely short inference
time, memory efficiency, the cost volume based architecture and the advantage that these
are usually baselines to compare newer architectures. It is difficult to select from all existing
architectures a set of them that can be easily compared. However, these two networks share
the following elements:

• The initial layers of each network create feature volumes relevant for the matching.
• The cost volume is designed to have a single channel per disparity/depth candidate

value, unlike other architectures where multiple channels represent each candidate.
This is a critical aspect, as the cost volumes used as input to the confidence networks
require the single channel shape. Newer approaches based on GRUs or Transformers
might present a compatibility issue.

• The architecture follows a coarse-to-fine design which is also memory efficient.
• The predicted disparity/depth maps are generated at full resolution, without the need

for further upsampling algorithms.
• The design of the networks is based on traditional convolutions.
• Although adapted for a learning scheme, the working principle is based on conven-

tional stereo and MVS approaches, such as SGM and the plane sweep algorithms.

We did not include more architectures for each case, as it is out of the scope of this
article to evaluate the performance of multiple stereo and MVS approaches, but to observe
the main differences between these two. In addition, these two networks were compared
with traditional approaches in our previous work [1], which complements the findings
from the experiments in this article.

4.1. Predicted Maps Fusion

Different methods can be used to estimate the disparity/depth maps as a first step to
generate a DSM. However, due to memory and computational constraints, remote sensing
images are usually cropped into tiles, which may correspond to different regions with some
overlapping. Hence, the predicted results define a stack of smaller DSMs that need to be
aligned and fused into a single DSM. To achieve this fusion, steps are different for stereo
and multi-view cases.

The pipeline to fuse predicted disparity and depth maps is shown in the Figure 7. We
represent here a case to fuse 6 images of SyntCities, but the principle is the same for the
Dublin data.

Starting from the stereo cases, which are Stereo and MVS_Stereo, we have a total of
15 possible combinations, and we always consider the disparity map from left to right
to get positive values, which is a restriction for the estimation of the networks. The
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15 disparity maps are then converted into height using the camera parameters along with
the baseline and subsequently georeferenced using the camera positions. Nonetheless,
the transformation of the disparity maps to height maps is still influenced by the acquisition
perspective, having an oblique view. Hence, it is necessary to orthorectify the images to
have the geometry required for the DSM.

We also have the MVS_Full case. Using the algorithms for MVS estimates the depth
for only one of the views at a time, which is considered to be the reference view while
the additional views provide complementary information. This means that we obtain
6 depth maps as a result of giving the same number of input images, since each of these
6 input images is used once as the reference view with the remaining ones used as the
complementary views. Although the number of results may seem smaller than in the stereo
case, the same number of images is used within the algorithms. After estimating the depth
for each view, we transformed this into height using also the camera parameters. Similarly
to the stereo case, the height map is still oriented to match the camera perspective and
required orthorectification as well.

Having all the results as orthorectified height maps, it is now possible to fuse the
results into a single DSM, benefiting from all single estimations. We considered two basic
yet widely used methods: mean and median for each pixel/location. The former provides
insights of the distribution of the predicted results. The latter is more effective and makes a
robust fusion by avoiding the influence of outliers, being the most common strategy.

Figure 7. Pipeline used to fuse the results of the predicted disparity/depth maps. In the case of
the Stereo and MVS_Stereo methods, more results are available but they use the same available
information as the MVS_Full case. All results then follow the same steps which include height
conversion, orthorectification and fusion.

4.2. Confidence Based Fusion

We also analyzed the case of fusing the depth and disparity maps using a confidence
based fusion. A diagram to explain the process is shown in the Figure 8, but we describe
here the steps in detail. The confidence maps help to fuse the depth and disparity maps, so
we need to process all the data simultaneously.
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Figure 8. Pipeline for confidence-based fusion. After estimating confidence maps along with the
height maps obtained from the reconstruction algorithms, a stack of height maps is sorted based on
the respective confidence values and then we compute the median to get the final DSM.

First, disparity/depth maps are converted to height maps using photogrammetric al-
gorithms. For this step, LAFNet is not required, just the results from the Stereo, MVS_Stereo
and MVS_Full algorithms. In parallel, the same depth/disparity maps along with the cost
volume (which has to be upsampled) and the RGB images are used as input to LAFNet,
generating a confidence map as a result.

After that, both height and confidence maps are orthorectified. Since both maps are
obtained for the same regions, the orthorectified maps cover the same pixels/areas. If we
apply these two steps to all input depth/disparity maps, we end up with a stack of height
and confidence maps.

In the above fused cases, we only apply the median to all the candidate height values
for each pixel to obtain the fused height. We do propose a different strategy to fuse the
height values by using the corresponding confidence values. We sort the stack of confidence
maps according to the values for each pixel from higher to lower, and based on this sorting,
we re-arrange the stack of height values as well. Afterwards, we remove the less confident
height values according to a removal percentage (rem%). For example, if we have 10 height
values for a certain pixel and set rem% = 50, only the 5 candidates with higher confidence
remain. We compute the median from the remaining values to generate the DSM.

4.3. Stereo Training

We train AANet for stereo matching in both SyntCities and Dublin (stereo dataset),
training from scratch for SyntCities and used this model to finetune on the Dublin data.
We followed this strategy as the ground truth for SyntCities is dense and accurate, so
the finetuning would help to reduce the domain gap for the testing area. For SyntCities,
from the original 5400 images from the training subsets, we removed 300 cases with large
baselines, keeping 5150 for training. 22 samples from the test subsets with 5 views each, so
110 samples were used for testing. The 5 additional views are on the same epipolar line,
so they can be used in stereo or multi-view mode. These images are taken from 3 stereo
pairs (6 images in total) where the leftmost view is used as reference. In the case of Dublin,
from the available tracks, we selected the subset 150326_122941 for finetuning and the
subset 150326_120403 for testing.

The training for SyntCities takes different views along the epipolar line as explained
previously for Figure 1. We used a batch size of 20 and trained the model for 370 epochs
and call this model Stereo_SC. The finetuning is done with the Dublin stereo samples for
additional 500 epochs. We reduce the maximum disparity to 96 as this range is enough
for these samples. We call this model Stereo_Du. Training was conducted on 4× NVIDIA
GeForce RTX 2080 Ti GPUs.
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4.4. MVS_Stereo and MVS_Full Training

Similarly to AANet, we train firstly on SyntCities and then finetuned the model on
Dublin samples. However, we apply two different training models for UniMVSNet: as a
stereo matching case and full multi-view, which means 2 views and 6 views as inputs re-
spectively. The first case will help to study the performance of UniMVSNet with conditions
very similar to AANet, and we call this case MVS_Stereo. The full multi view is intended
to give data to compare the impact of having more views as input and if this is beneficial
for the reconstruction and we named this case simply MVS_full.

In the MVS_Stereo based instance, we train UniMVSNet on SyntCities for 40 epochs
with 2 input views, a batch size of 2 and the image pairs are loaded with the same pairing
order as for AANet. Afterwards, we finetuned the model for additional 270 epochs. We call
these models MVS_Stereo_SC and MVS_Stereo_Du for SyntCities and Dublin respectively.

Similarly, we train the MVS_Full case with UniMVSNet by applying a number of views
of 6 for 160 epochs. The number of iterations is larger as there are less possible combinations
of input images as for the stereo case. For the finetuning we applied additional 600 epochs.
These models are named as MVS_Full_SC and MVS_Full_Du. Finetuning models had more
epochs due to the relatively fewer samples in Dublin comparing to SyntCities.

4.5. LAFNet Training

LAFNet requires the cost volumes as inputs along with the RGB images, the predicted
depth/disparity maps and the depth/disparity ground truth maps. While using algorithms
such as SGM or MC-CNN, the whole cost volumes are easy to identify and export as
additional files, providing also information for each pixel. However, neural networks
usually use structures where the volumes are downsampled to reduce computational
resources. Moreover, the volumes in the coarsest resolutions generally offer a better
overview of the matching, as they take into account the full disparity range. The finer
volumes mostly refine around a certain disparity range, not the full one. Hence, we used
the coarsest cost volumes from AANet and UniMVSNet, in both cases after the aggregation
steps to reduce the presence of outliers.

We adapted both networks to export the cost volumes as described above. Besides,
LAFNet applies a pre-processing step to the input cost volumes as mentioned in [34], where
the values are normalized to improve the discriminative power of the network and the
“top-k” function selects the main cost candidates only. This helps also to reduce the memory
demands of the algorithm. In order to also reduce the storage space required for the cost
volumes, we apply this processing step before exporting the cost volumes. It also avoids
additional processing each time the LAFNet is loading the data.

Nonetheless, using the coarse cost volume makes the input data to be mismatched in
terms of resolution. We solved this by interpolating the stored coarse cost volume to match
the input image. A more sophisticated upsample strategy based on learning parameters
might provide a better result, but we keep that out of scope as our purpose is not to design
a new confidence learning network.

We also observed that LAFNet uses a binary cross entropy loss to segment the confi-
dence mask into the ideal case of confident and non-confident pixels. Still, we would like
to study the effect of using L1-loss based on the error instead. The confidence estimation
is based on an error threshold (common values for disparity threshold errors are 3 and
1 pixels) and is computed from the difference between the predicted and ground truth
disparities as:

diff =

|disp − dispgt| if |disp − dispgt| ≤ errt

errt if |disp − dispgt| > errt
(1)
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conf = 1 − diff
errt

(2)

where errt is the error threshold, disp the predicted disparity value, dispgt the ground-truth
disparity value and conf the confidence value used as ground truth for LAFNet. Due to
the clipping of the disparity difference (diff ), the values of confidence are restricted to
0 ≤ conf ≤ 1.

Since the real data is more challenging and the confidence can help to distinguish bad
predicted areas, we trained only on the Dublin dataset. We trained LAFNet for 250 epochs,
with patches of 494 × 494 pixels and a batch size of 4. Tiles are cropped from all the inputs
over the same pixels to maintain consistency with the ground truth. Such tiling is applied
due to memory constraints. The LAFNet models were trained on one NVIDIA GeForce
RTX 2080 Ti GPU and we call this model Conf_Stereo. The original input cost volumes,
which were obtained with AANet, were upsampled by ×3 to match the images input
size. For the results coming from UniMVSNet, we upsampled ×4 the input cost volumes,
and these models were trained for 350 and 1000 epochs for the MVS_Stereo and MVS_Full
cases respectively, naming them as Conf_MVS_Stereo and Conf_MVS_Full. The latter had
more epochs as the number of input depth maps is lower than the former.

5. Results
In this section we present the qualitative and quantitative evaluation of the fused

models in comparison to the ground truth DSM. For the three applied algorithms (Stereo,
MVS_Stereo and MVS_Full) we used both datasets SyntCities and Dublin, having a total of
6 DSMs to be evaluated.

5.1. Metrics

We consider three metrics to evaluate the accuracy of the fused models, which are:

• Median Absolute Deviation (MAD). Since the median based metrics are more robust to
outliers [38] we apply MAD, which can be derived from the median of the difference
(Meddiff). The median of the difference is computed between the ground truth and
the fused DSMs. This is computed as:

Meddiff = median(Xdiff), Xdiff = X − X̄ (3)

where X is the ground truth, X̄ is the compared DSM and Xdiff is the difference
between both. Second we compute the MAD as:

MADdiff = median(| Xdiff − X̃diff |) (4)

where X̃diff = median(Xdiff)

• Mean Absolute Error (MAE), which is the absolute difference between the predicted
result and the ground truth values. It is computed as:

MAE =
1
n

n

∑
i=1

|Xi − X̄i| (5)

• Root mean square error (RMSE). It helps to remark the presence of large outliers,
as they get more weight in the metric. This can be computed as:

RMSE =

√
1
n

n

∑
i=1

(Xi − X̄i)2 (6)
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• Error rate 3 m (e3m). This metric is similar to the error rates for stereo matching
algorithms, but using meters instead of pixels. From all evaluated pixels, we compute
the percentage of them where the error is larger than 3 m.

• Error rate 1 m (e1m). This metric works the same way then e3m, but for a stricter
margin of 1 m.

5.2. Results SyntCities

We do analyse first the results for the SyntCities. As the data has a synthetic nature,
the networks faced a simplified case where a controlled environment was used to render
the scenes. Nonetheless, as the ground truth is very accurate, these experiments provided
insights about the matching capabilities of the algorithms.

We evaluate the models Stereo_SC, MVS_Stereo_SC and MVS_Full_SC, which were
trained on SyntCities and applied the median to fuse all height maps into the final DSM.
The results are shown in Table 1. A total of 22 scenes were evaluated and the results are av-
eraged from individual results. Inference for Stereo_SC requires 1.18 s, for MVS_Stereo_SC
0.8 s and for MVS_Full_SC 1.19 s. Times are slightly longer than in the original implemen-
tations as the cost volumes are also exported.

From the presented metrics, we can observe the algorithms achieve a similar per-
formance in the reconstructed DSMs. We show both mean and median based fusions
in the results, as the mean one provides information about the presence of outliers in
the estimated heights and the median one provides a more robust result. The best per-
forming of the three selected algorithms is Stereo_SC, which is based on AANet. If we
analyze e3m, Stereo_SC shows an error rate of 9.38%, which is 1.2% and 2.9% less than
MVS_Full_SC and MVS_Stereo_SC respectively, containing less outliers. For the stricter
e1m rate, Stereo_SC is again best, with differences of 0.2% and 2.3% in comparison to
MVS_Full_SC and MVS_Stereo_SC respectively, showing that MVS_Full_SC has a com-
petitive performance in this metric. With respect to the MAD metric, the results benefit
the MVS algorithms. This shows that MVS can achieve a more accurate result for a well
matched pixel but the outliers are larger than in the stereo method for areas difficult to
match. Regarding MAE and RMSE we also notice a better performance when using the me-
dian fusion. For these two metrics the values are consistent with e3m and e1m, observing
the best result for Stereo_SC, followed by MVS_Full_SC and MVS_Stereo_SC.

In the Figure 9 there is a visualization for the performance of the evaluated cases.
In the upper row, the generated DSMs are compared along with the ground truth, while
the lower row shows the absolute error map clipped to a threshold of 1m. The RGB image
helps to visualize the texture and geometry of the features to match. As mentioned for
the table analysis, the MVS methods present more outliers in areas difficult to match like
the texture less areas in the rooftop and ground of the shown building. The Stereo_SC
method has less error regions and performs better for the difficult areas. However, around
the church domes, the Stereo_SC method is less accurate, especially around boundaries. It
is also noticeable how the error regions vary smoothly in the stereo case, whereas for the
MVS cases the values vary significantly from one pixel to another. Focusing only on the
two MVS results, MVS_Full_SC is better than MVS_Stereo_SC, with a small difference in
MAD but a better performance in e3m and e1m.

A 3D visualization of the computed DSMs is shown in Figure 10 for the same area as
Figure 9. There we can observe how the Stereo_SC method produces smooth areas and the
MVS cases suffer from outliers, especially MVS_Stereo_SC, where the values are not even
similar to the height range of the scene.
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Table 1. DSM generation metrics, based on the fusion of stereo and MVS results for the SyntC-
ities dataset. As indicated by the arrows, the best results are obtained with the lower values of
the metrics.

Metrics

Network Fusion MAD (↓) MAE (↓) RMSE (↓) e3m (↓) e1m (↓)

Stereo_SC Mean 0.45 1.26 1.75 11.38 26.22
Median 0.39 1.14 1.49 9.38 22.12

MVS_Full_SC Mean 0.32 1.62 1.88 13.04 26.02
Median 0.29 1.41 1.58 10.55 22.30

MVS_Stereo_SC Mean 0.39 2.51 2.45 21.23 37.99
Median 0.29 1.61 1.76 12.27 24.47

(a) DSM-Ground Truth (b) Stereo-SC (c) MVS-Full-SC (d) MVS-Stereo-SC

(e) Reference image (f) e1m-Stereo-SC (g) e1m-MVS-Full-SC (h) e1m-MVS-Stereo-SC

Figure 9. DSMs and error maps for a SyntCities sample. For the reference image (e) with ground
truth (a), we show the DSMs computed by using the models Stereo_SC (b), MVS_Full_SC (c) and
MVS_Stereo_SC (d). The respective 1 m-error maps (e1m) for the same models are shown in (f–h).
Scale bars for the DSMs and error maps are given as a reference and use meters as unit. Errors are
clipped to a maximum of 1 m. Regions in black correspond to undefined pixels by the algorithms.

(a) GT (b) Stereo_SC (c) MVS_Full_SC (d) MVS_Stereo_SC

Figure 10. SyntCities computed DSMs, 3D view. For the same perspective given for the ground truth
(a), we show the results for the models Stereo_SC (b), MVS_Full_SC (c) and MVS_Stereo_SC (d).
It covers the same area as the Figure 9. Height values are displayed in blue to red color from low
to high.

5.3. Results Dublin

For the experiments applied to the Dublin dataset, we show the obtained results in
Table 2. We compare now the models Stereo_Du, MVS_Full_Du and MVS_Stereo_Du,
which were finetuned with the Dublin dataset. As this dataset reflect the complexity of real-
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world scenes, the performance is lower than the one observed for SyntCities. Inference for
Stereo_SC requires 1.27 s, for MVS_Stereo_SC 2.1 s and for MVS_Full_SC 3.03 s. Times are
slightly longer than in the original implementations as the cost volumes are also exported
and also longer than for SyntCities as many tiles are larger.

Again we observe the results to be in a similar range, demonstrating that all alter-
natives have reasonable capabilities for the 3D reconstruction. Nonetheless, there are
differences to show which one performs best in real data. We observe here that in this case
MVS_Full_Du is the leading algorithm followed by Stereo_Du and finally MVS_Stereo_Du.
The change about Stereo not leading these results might come from the dataset configura-
tion, as SyntCities was designed to work in a stereo matching framework, rendered already
with epipolar geometry.

For the e3m rate, MVS_Full_Du leads the table with an advantage of 1.92% and 2.26%
over Stereo_Du and MVS_Stereo_Du respectively. A similar trend is observed for the
stricter e1m rate, with improvements of 3.51% and 9.12%. The difference in the latter metric
is high between both MVS solutions, showing MVS_Full_Du is better than MVS_Stereo_Du
by a good margin. Although MVS_Full_Du is also better than Stereo_Du, the difference
with respect to stereo is not large, especially for MAD. Focusing on MAD for the median
based fusion of each algorithm, Stereo_Du and MVS_Full_Du have only a change of 0.01%,
and 0.2% to MVS_Stereo_Du. With respect to the MAE and RMSE, these show a similar
trend as MAD. Particularly, RMSE values mean that some outliers present in the Stereo_Du
result are larger than for MVS cases.

In Figure 11 we show the results for the computed DSMs. The upper row includes
the DSMs and the lower one the error maps, in this case with a threshold of 3 m as the
reconstruction is less accurate than for the synthetic data. Still, we observe some similarities
to the performance described for SyntCities. The quality around the edges is again better
using the MVS algorithms as we can see for buildings and trees. Interestingly, for the trees
themselves Stereo_Du achieves a better estimation, as for MVS these areas show errors
larger than 3 m. Whilst the metrics are calculated for the entire acquisition track, we only
show part of it in the image so that the buildings and edges are zoomed in enough to be
easily observed.

Table 2. DSM generation metrics, based on the fused results of stereo and MVS for the Dublin dataset.
As indicated by the arrows, the best results are obtained with the lower values of the metrics.

Metrics

Network Fusion MAD (↓) MAE (↓) RMSE (↓) e3m (↓) e1m (↓)

Stereo_Du Mean 2.49 6.06 13.49 47.06 72.68
Median 0.56 1.92 10.01 15.18 36.76

MVS_Full_Du Mean 0.60 1.51 2.86 13.97 35.51
Median 0.55 1.49 2.94 13.26 33.25

MVS_Stereo_Du Mean 1.1 2.06 3.32 21.20 54.27
Median 0.75 1.77 3.32 15.52 42.31

A 3D visualization of the DSMs is displayed in Figure 12. Rooftops are smoother and
include less outliers in the Stereo_Du result. Besides, the vegetation is better represented as
most of their surface is above ground level comparing with both MVS results. On the other
hand, MVS_Stereo_Du and especially MVS_Full_Du compute a better estimation for pixels
on the ground level, but they reduce significantly the expected surface for vegetation.
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(a) DSM - Ground Truth (b) Stereo-Du (c) MVS-Full-Du (d) MVS-Stereo-Du

(e) Oblique close image (f) e3m-Stereo-Du (g) e3m-MVS-Full-Du (h) e3m-MVS-Stereo-Du

Figure 11. DSMs and error maps for a Dublin sample. For ground truth (a), we show the DSMs
computed by using the models Stereo_Du (b), MVS_Full_Du (c) and MVS_Stereo_Du (d). The re-
spective 1 m-error maps (e1m) for the same models are shown in (f–h). Scale bars in meters for the
DSMs and error maps are given as a reference. Errors are clipped to a maximum of 3 m. Regions in
black correspond to undefined pixels by the algorithms. The corresponding orthorectified RGB is not
shown, as this was not provided in the original dataset for this region. Instead, we show an oblique
image captured close to this region in (e). This image is not aligned with the results.

(a) GT (b) Stereo_Du (c) MVS_Full_Du (d) MVS_Stereo_Du

Figure 12. Dublin computed DSMs, 3D view. For the same perspective given for the ground truth
(a), we show the results for the models Stereo_Du (b), MVS_Full_Du (c) and MVS_Stereo_Du (d). It
covers the same area as the Figure 11.

5.4. Results Confidence

In a separate section, we want to discuss the results of using the confidence values
for the fusion with the method presented in Section 4.2. We evaluated the three DSM
generation algorithms, namely Stereo_Du, MVS_Full_Du and MVS_Stereo_Du with the
same approach, although LAFNet was designed only for stereo data and disparity maps.
We studied only the case for the Dublin dataset, as it is more challenging and it has more
candidate values for each pixel.

For each of the algorithms we analysed the following cases:

• Optimal: We select the best candidate for each pixel based on the difference with
respect to the ground truth. Methods cannot achieve such accuracy, but we use it as a
reference of the ideal best performance.

• Mean: We compute the mean of all candidate values to set the height of the pixels as
previously used.

• MeanN: We remove the N% less confident values for each pixel and then we compute
the mean. N ∈ {25, 50}
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• Median: We compute the median of all candidate values to set the height of the pixels
as previously used.

• MedianN: We remove the N% less confident values for each pixel and then compute
the median. N ∈ {25, 50}
Since the mean and the median based fusions without removal are the same algorithm

as in the previous sections, these values are also found in Table 2. Despite being the median
one more robust than the mean case, we include both to give insights about the distribution
of the candidate values. The new results are given in Table 3.

With regard to the Stereo_Du case and the mean based fusion, we observe that
using the confidence values reduces significantly the presence of outliers. We see that
for Mean25 and Mean50 the e3m rate drops to 18.33 and 15.33 respectively from the
original 47.06. For the stricter e1m rate, the values drop to 43.03 and 38.69 instead of
72.68. This shows that large outliers were assigned a low confidence value. Considering
the median based fusion values, the error rates decrease as well by approximately 2%
in both e3m and e1m. By removing significant outliers from the distribution, the MAD
of the remaining values gets closer to the ground truth. This is also consistent for MAE
and RMSE, where we notice an improvement where the confidence values were used.
As the fusion is evaluated per pixel, the algorithm can also be implemented efficiently
for parallelization. Hence, the confidence based fusion helps to refine the computed
DSM for the stereo case.

Nevertheless, the confidence values do not seem to help in a similar manner the
results from MVS_Full_Du and MVS_Stereo_Du. If we focus on the MVS_Full_Du case,
we observe that the higher the percentage of removed pixels, the higher the error rate as
well. Although the difference is small, we note that there is no trend towards improvement.
Addressing the MVS_Stereo_Du case, we notice for both mean and median based fusions
a slightly better performance by using rem% = 25 in all metrics. By setting rem% = 50
the error rate is not decreasing. As LAFNet was developed for a distinct input data, we
consider many aspects should be taken into account to redesign the network to handle
depth maps as well. Some of these aspects include:

• Disparity maps and images are both in pixels and work in a 2D domain, while depth
is meters and represents a 3D space, which is harder to correlate with the input images
without the homography matrix information. Besides, depth and disparity ranges are
inversely proportional and span different numerical ranges.

• Cost volumes used in UniMVSNet have a downsampling rate of ×4, which means the
number of pixels is 1/16 of the original image size, missing details while upsampling
the cost volume to be used by LAFNet. Nonetheless, the memory demands of the
MVS algorithms limit the size of the cost volume to be computed.

• The learned features for the cost volumes vary from those for stereo matching. Espe-
cially for the MVS_Full_Du case, where many views are taken into account, the features
for a reference image contain information from many additional views, where not all
pixels are always visible. MVS_Stereo_Du seems to suffer less from this effect.

• MVS algorithms already make a fusion from different views based on the learned
weights. Hence, the confidence might not be so discriminative to filter bad candidates
in the estimated map.

The design of a new confidence network is out of our scope, but after studying the
effect on the stereo data, we see potential to use the confidence based fusion as a good
strategy to create DSMs.

We show visually the results of the stereo case by using different rem% rates. In
Figure 13 the images show the impact of the confidence based fusion. For the mean fusion
cases, we see a significant reduction of the error rate, particularly between no confidence



Remote Sens. 2025, 17, 1 19 of 23

guidance and Mean25, it also improves the fusion around edges for the Mean50 result.
The median fusion is more robust and as shown in (d) is less influenced by outliers.
By using the confidence values, the fusion improves again mostly around building edges.
As observed for the results of the stereo method, these areas are challenging for AANet,
but with this guided fusion we can improve the accuracy of the computed DSM.

A 3D representation for the same area is shown in Figure 14. Improvements are mostly
in the edges of buildings (smoother in the median cases with confidence), less artifacts on
the ground level (excluding cars). Regions highlighted in Figure 13 can also be compared
for the 3D representation to observe changes.

Table 3. DSM generation metrics, based on the fusion of stereo and MVS results for the Dublin
dataset. In this case, the confidence was used for the fusion process. As indicated by the arrows, the
best results are obtained with the lower values of the metrics.

Metrics

Network Fusion MAD (↓) MAE (↓) RMSE (↓) e3m (↓) e1m (↓)

Stereo_Du

Optimal 0.06 0.57 5.48 4.00 10.47
Mean 2.49 6.06 13.49 47.06 72.68
Mean25 0.67 2.30 8.95 18.33 43.03
Mean50 0.59 1.83 7.04 15.33 38.69
Median 0.56 1.92 10.01 15.18 36.76
Median25 0.53 1.84 9.82 14.57 34.88
Median50 0.53 1.69 7.99 13.79 34.12

MVS_Full_Du

Optimal 0.14 0.71 1.96 6.04 14.82
Mean 0.60 1.51 2.86 13.97 35.51
Mean25 0.60 1.51 2.88 13.96 35.23
Mean50 0.63 1.55 2.95 14.25 36.27
Median 0.55 1.49 2.94 13.26 33.25
Median25 0.57 1.51 2.96 13.40 34.00
Median50 0.62 1.57 3.03 13.84 36.50

MVS_Stereo_Du

Optimal 0.09 0.33 1.04 1.89 6.58
Mean 1.10 2.06 3.32 21.20 54.27
Mean25 1.04 1.99 3.28 19.72 51.97
Mean50 1.08 2.06 3.42 20.21 52.90
Median 0.75 1.77 3.32 15.52 42.31
Median25 0.76 1.78 3.36 15.63 42.15
Median50 0.84 1.89 3.52 16.49 45.32

(a) Mean (b) Mean25 (c) Mean50 (d) Median (e) Median25 (f) Median50

Figure 13. Dublin DSMs created with confidence based fusion - Stereo case. We show cases for mean
fusion without confidence (a), with rem% = 25 (b) and with rem% = 50 (c). Similar cases are presented
for the median in (d–f). Scale bar for the error is given in meters. Yellow rectangles highlight areas
with significant differences.
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(a) Ground Truth (b) Median (c) Median50

Figure 14. Generated DSMs for a Dublin region in a 3D representation—Stereo case. Region is the
same as for Figure 13. We show three DSMs: ground truth, median fusion (no confidence based) and
median fusion rem% = 50. Changes are highlighted with the white rectangles.

6. Conclusions
We presented in this paper a comparison between stereo and multi-view stereo (MVS)

deep learning algorithms. From the presented results, we show how all solutions (Stereo,
MVS_Full and MVS_Stereo) were able to compute a reliable DSM and preserving most of
the geometric information. Stereo produces smoother results and is less prone to outliers,
facing challenges in areas adjacent to edges. On the other hand, MVS_Full and MVS_Stereo
provide a better height estimation for those areas where the matching is not so challenging,
but it also suffer from larger outliers where the matching fails, including textureless areas.
We consider MVS_Full to be the most robust solution, also due to the low MAD values.
Stereo also shows a good performance and benefits more from context information to
compute a similar estimation for regions belonging to the same object, presenting errors
mostly on edges instead. MVS_Stereo showed the lowest performance between the three
approaches, leading to larger outliers and less accuracy for the strict e1m rate. Between the
two basic fusion algorithms, we find that median fusion is superior to mean fusion in all
cases, so we do not recommend the latter as it is not robust to the influence of large outliers
present in the estimated heights.

Regarding the confidence based fusion strategy we adopted, the results for the Stereo
method showed an improvement, particularly for areas adjacent to the edges where the
matching algorithm is prone to errors, compensating this flaw. However, the same method
did not lead to more accurate DSMs for the MVS_Full and MVS_Stereo algorithms. We
described some factors that could explain this issue, such as the discrepancies between
depth and disparity maps, and the cost volumes sizes.

We additionally provide a processed version of the Dublin dataset to be applied in
stereo and MVS algorithms, encouraging the community to continue the experiments in
this direction or to easily apply the new architectures in the remote sensing field.

Future Work

Based on the obtained results, we observed that the confidence based fusion lead to
good results in the height maps estimated by the stereo algorithm. We would like to explore
possible changes to the network to obtain also a good performance for the MVS cases.

Additionally, a more sophisticated algorithm using the confidence values to fuse
the DSM should be explored, not only the removal of bad pixels and the median of the
remaining values. A neural network that uses both height and confidence maps as inputs
for the fusion could be an interesting research topic.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DSM Digital Surface Model
e1m Error rate 1 m
e3m Error rate 3 m
FCN Fully Connected Networks
GRU Gated Recurrent Unit
GSD Ground Sample Distance
MAD Median Absolute Deviation
MVS Multi-view Stereo
SAR Synthetic Aperture Radar
SGM Semi-Global Matching
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