elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Assessing the Data-Centric Robustness of a Crack Tip Detection Model through Artificial Data Pollution

Gorea, Nicoleta (2025) Assessing the Data-Centric Robustness of a Crack Tip Detection Model through Artificial Data Pollution. Bachelorarbeit, Hochschule Bonn-Rhein-Sieg.

[img] PDF - Nur DLR-intern zugänglich bis Dezember 2026
11MB

Kurzfassung

Ensuring the early detection of fatigue cracks is critical for maintaining the structural integrity of components in high-risk environments such as aerospace engineering. Optical methods that measure material deformation without physical contact have made it possible to track crack development with high spatial precision. Recent advances in automated analysis tools based on machine learning have enabled efficient interpretation of deformation data to identify crack tips. However, real world experiments often yield imperfect input images due to sensor noise, motion blur, or other artifacts, which may reduce the reliability of these algorithms. This thesis investigates how the accuracy of a crack detection model is affected by such degradation in data quality. Controlled distortions were applied to input images at varying intensity levels, and the Performance of the model was evaluated based on its ability to localize the crack tip under each condition. The results reveal which forms of degradation are most detrimental, at which threshold the algorithm begins to fail and how does training with noisy inputs improve performance. The study concludes with practical recommendations for improving the reliability of crack detection tools when used in imperfect laboratory environments, thereby contributing to more robust fracture analysis in aerospace applications.

elib-URL des Eintrags:https://elib.dlr.de/222112/
Dokumentart:Hochschulschrift (Bachelorarbeit)
Titel:Assessing the Data-Centric Robustness of a Crack Tip Detection Model through Artificial Data Pollution
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gorea, Nicoletanicoleta.gorea (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorBonasera, Lorenzolorenzo.bonasera (at) dlr.deNICHT SPEZIFIZIERT
Thesis advisorMelching, DavidDavid.Melching (at) dlr.dehttps://orcid.org/0000-0001-5111-6511
Datum:12 August 2025
Erschienen in:Archive of the Hochschule Bonn-Rhein-Sieg
Open Access:Nein
Seitenanzahl:79
Status:akzeptierter Beitrag
Stichwörter:data quality, robustness, CNNs, deep learning
Institution:Hochschule Bonn-Rhein-Sieg
Abteilung:Natural Sciences
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Gorea, Nicoleta
Hinterlegt am:20 Jan 2026 08:19
Letzte Änderung:20 Jan 2026 08:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.