Merola, Salvatore und Mhatre, Aditi und Koschlik, Ann-Kathrin und Guida, Michele und Marulo, Francesco (2025) Comparative Analysis of Generative Data Augmentation Techniques for Aircraft Damage Detection Algorithms: A Case Study. In: Comparative Analysis of Generative Data Augmentation Techniques for Aircraft Damage Detection Algorithms: A Case Study. 10th CEAS Aerospace Europe Conference, 28th AIDAA International Congress, 2025-12-01 - 2025-12-04, Turin, Italy. (im Druck)
|
PDF
- Nur DLR-intern zugänglich
295kB |
Kurzfassung
This study addresses the challenge of limited annotated data in aircraft surface damage detection by evaluating generative models for data augmentation. Conducted within the CINNABAR 2 project with DLR MRO institute in Hamburg (DE), it compares Generative Adversarial Networks (GANs) and Diffusion Models for producing realistic synthetic images. Real data were collected from smartphones, DSLRs, and robotic camera systems. Image quality was assessed using the Learned Perceptual Image Patch Similarity (LPIPS) metric and visual inspection. Results indicate that Diffusion Models outperform GANs, achieving a lower LPIPS score and better detection metrics, demonstrating superior realism, diversity, and suitability for enhancing deep learning model training.
| elib-URL des Eintrags: | https://elib.dlr.de/222034/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||
| Titel: | Comparative Analysis of Generative Data Augmentation Techniques for Aircraft Damage Detection Algorithms: A Case Study | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||
| Erschienen in: | Comparative Analysis of Generative Data Augmentation Techniques for Aircraft Damage Detection Algorithms: A Case Study | ||||||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Status: | im Druck | ||||||||||||||||||||||||
| Stichwörter: | Aircraft Maintenance, Generative AI, Data Augmentation, Computer Vision, Digital Optics | ||||||||||||||||||||||||
| Veranstaltungstitel: | 10th CEAS Aerospace Europe Conference, 28th AIDAA International Congress | ||||||||||||||||||||||||
| Veranstaltungsort: | Turin, Italy | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 1 Dezember 2025 | ||||||||||||||||||||||||
| Veranstaltungsende: | 4 Dezember 2025 | ||||||||||||||||||||||||
| Veranstalter : | Council of European Aerospace Societies (CEAS), Italian Association of Aeronautics and Astronautics (AIDAA) | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||||||||||||||
| Standort: | Hamburg | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Instandhaltung und Modifikation > Wartungs- und Reparaturtechnologien Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung | ||||||||||||||||||||||||
| Hinterlegt von: | Mhatre, Aditi | ||||||||||||||||||||||||
| Hinterlegt am: | 15 Jan 2026 15:57 | ||||||||||||||||||||||||
| Letzte Änderung: | 15 Jan 2026 15:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags