Spanier, Robin und Hoeser, Thorsten und Kuenzer, Claudia (2026) Deep learning-based object detection of offshore platforms on Sentinel-1 imagery and the impact of synthetic training data. International Journal of Remote Sensing, Seiten 1-25. Taylor & Francis. doi: 10.1080/01431161.2026.2612908. ISSN 0143-1161.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://doi.org/10.1080/01431161.2026.2612908
Kurzfassung
The recent and ongoing expansion of marine infrastructure, including offshore wind farms, oil and gas platforms, artificial islands, and aquaculture facilities, highlights the need for effective monitoring systems. The development of robust models for offshore infrastructure detection relies on comprehensive, balanced datasets, but falls short when samples are scarce, particularly for underrepresented object classes, shapes, and sizes. By training deep learning-based YOLOv10 object detection models with a combination of synthetic and real Sentinel-1 satellite imagery acquired in the fourth quarter of 2023 from four regions (Caspian Sea, South China Sea, Gulf of Guinea, and Coast of Brazil), this study investigates the use of synthetic training data to enhance model performance. We evaluated this approach by applying the model to detect offshore platforms in three unseen regions (Gulf of Mexico, North Sea, Persian Gulf) and thereby assess geographic transferability. This region-holdout evaluation demonstrated that the model generalizes beyond the training areas. In total, 3529 offshore platforms were detected, including 411 in the North Sea, 1519 in the Gulf of Mexico, and 1593 in the Persian Gulf. The model achieved an F1 score of 0.85, which improved to 0.90 upon incorporating synthetic data. We analysed how synthetic data enhances the representation of unbalanced classes and overall model performance, taking a first step towards globally transferable detection of offshore infrastructure. This study underscores the importance of balanced datasets and highlights synthetic data generation as an effective strategy to address common challenges in remote sensing, demonstrating the potential of deep learning for scalable, global offshore infrastructure monitoring.
| elib-URL des Eintrags: | https://elib.dlr.de/221946/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | Deep learning-based object detection of offshore platforms on Sentinel-1 imagery and the impact of synthetic training data | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 10 Januar 2026 | ||||||||||||||||
| Erschienen in: | International Journal of Remote Sensing | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| DOI: | 10.1080/01431161.2026.2612908 | ||||||||||||||||
| Seitenbereich: | Seiten 1-25 | ||||||||||||||||
| Verlag: | Taylor & Francis | ||||||||||||||||
| ISSN: | 0143-1161 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Earth observation; object detection; oil rigs; offshore; offshore platforms; remote sensing; sentinel-1; YOLOv10 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||
| Hinterlegt von: | Spanier, Robin | ||||||||||||||||
| Hinterlegt am: | 13 Jan 2026 09:32 | ||||||||||||||||
| Letzte Änderung: | 19 Jan 2026 12:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags