elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Deep learning-based object detection of offshore platforms on Sentinel-1 imagery and the impact of synthetic training data

Spanier, Robin und Hoeser, Thorsten und Kuenzer, Claudia (2026) Deep learning-based object detection of offshore platforms on Sentinel-1 imagery and the impact of synthetic training data. International Journal of Remote Sensing, Seiten 1-25. Taylor & Francis. doi: 10.1080/01431161.2026.2612908. ISSN 0143-1161.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://doi.org/10.1080/01431161.2026.2612908

Kurzfassung

The recent and ongoing expansion of marine infrastructure, including offshore wind farms, oil and gas platforms, artificial islands, and aquaculture facilities, highlights the need for effective monitoring systems. The development of robust models for offshore infrastructure detection relies on comprehensive, balanced datasets, but falls short when samples are scarce, particularly for underrepresented object classes, shapes, and sizes. By training deep learning-based YOLOv10 object detection models with a combination of synthetic and real Sentinel-1 satellite imagery acquired in the fourth quarter of 2023 from four regions (Caspian Sea, South China Sea, Gulf of Guinea, and Coast of Brazil), this study investigates the use of synthetic training data to enhance model performance. We evaluated this approach by applying the model to detect offshore platforms in three unseen regions (Gulf of Mexico, North Sea, Persian Gulf) and thereby assess geographic transferability. This region-holdout evaluation demonstrated that the model generalizes beyond the training areas. In total, 3529 offshore platforms were detected, including 411 in the North Sea, 1519 in the Gulf of Mexico, and 1593 in the Persian Gulf. The model achieved an F1 score of 0.85, which improved to 0.90 upon incorporating synthetic data. We analysed how synthetic data enhances the representation of unbalanced classes and overall model performance, taking a first step towards globally transferable detection of offshore infrastructure. This study underscores the importance of balanced datasets and highlights synthetic data generation as an effective strategy to address common challenges in remote sensing, demonstrating the potential of deep learning for scalable, global offshore infrastructure monitoring.

elib-URL des Eintrags:https://elib.dlr.de/221946/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep learning-based object detection of offshore platforms on Sentinel-1 imagery and the impact of synthetic training data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Spanier, Robinrobin.spanier (at) dlr.dehttps://orcid.org/0009-0005-5959-6210202255401
Hoeser, Thorstenthorsten.hoeser (at) dlr.dehttps://orcid.org/0000-0002-7179-3664NICHT SPEZIFIZIERT
Kuenzer, Claudiaclaudia.kuenzer (at) dlr.dehttps://orcid.org/0009-0007-4933-5898NICHT SPEZIFIZIERT
Datum:10 Januar 2026
Erschienen in:International Journal of Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1080/01431161.2026.2612908
Seitenbereich:Seiten 1-25
Verlag:Taylor & Francis
ISSN:0143-1161
Status:veröffentlicht
Stichwörter:Earth observation; object detection; oil rigs; offshore; offshore platforms; remote sensing; sentinel-1; YOLOv10
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Spanier, Robin
Hinterlegt am:13 Jan 2026 09:32
Letzte Änderung:19 Jan 2026 12:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.