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1. Introduction

In the past few decades, the expansion of maritime persistent infrastructure has acceler-
ated, particularly in relation to energy infrastructure such as oil and gas platforms and
wind farms (Bugnot et al. 2021; Liu et al. 2019). Among these, offshore platforms play
a central role in supporting a wide range of marine operations. Platforms serve as a base
for offshore activities, provide work and living facilities, and are essential for the exploita-
tion of marine resources, research, production, rescue operations, maritime logistics,
storage, and transport (X. Zhang et al. 2025). They occur in various structural configura-
tions adapted to water depth and environmental conditions, designed to operate for over
25years in harsh environments (Figure 1) (Sadeghi 2007). This maritime infrastructure
contributes significantly to economic development and drive social and technological
progress in regions that have previously been poor in resources. In 2020, offshore oil and
gas extraction reached a peak at USD 988 billion in gross output value (OECD 2025).
Stakeholders such as governments, regulatory authorities, and operators seek to harmo-
nize international installation and decommissioning practices of this infrastructure (OECD,
Organisation for Economic Co-operation and Development (2025); Potter and Pearson
2023). The aim is to effectively manage the dynamic development of the maritime space
while taking into account the associated ecological, economic, and social interests, for
example, in the areas of ecosystem services, fisheries, logistics, shipping, the recreation
industry, and nature conservation (Ma et al. 2024; Posen et al. 2020; J. Wang et al. 2014;
Williamson et al. 2016). Reliable data on offshore infrastructure is essential for maritime
domain awareness and facilitates environmental management, decision making, and
policy to address challenges across their life cycle (OECD 2025; Potter and Pearson
2023; OECD 2021). Some installations transmit positional data via AlS to enhance mon-
itoring (March et al. 2021) and regulations such as the EU’s Environmental Impact
Assessment (EIA) mandate reporting of new facilities (European Commission and
Directorate-General for Environment 2022). However, such regulations are regionally

Figure 1. Schematic overview of offshore energy infrastructure, in particular, different platform types.
Fixed platforms are anchored to the seabed using piles or jackets and are common in shallow waters,
while semi-permanent structures are partially mobile and used in deeper settings. Figure adjusted
from (Spanier and Kuenzer 2024).
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limited and inconsistently enforced, and existing data are often incomplete or restricted
due to confidentiality and security concerns (Liu et al. 2016; Sun et al. 2020; Virdin et al.
2021; Wong, Thomas, and Halpin 2019). Given these challenges, the development of
reliable, scalable methods for accurately and quickly detecting the location and charac-
teristics, such as size, type, or design, of offshore infrastructure is a key concern.

Over the past 50 years, tens of millions of satellite images have been collected and
archived, opening up new possibilities for environmental and infrastructure monitor-
ing. Advances in this field provide an overview of the condition and dynamics of large-
scale Earth surfaces (Baumhoer et al. 2023; Esch et al. 2022; Hoeser and Kuenzer
2022a). Satellite remote sensing offers regular and effective monitoring without the
need for direct access, particularly for regions that are difficult to access, such as
offshore areas (UNCTAD 2021; Yang et al. 2013). With a short repeat cycle, global
coverage, and the continuous availability of long-term measurements, a wide range of
data is collected by various sensors and made publicly available in a constantly
growing, updated, and nearly global database. In addition, earth observation (EO)
has benefited significantly from advances in cloud computing and data science.
Platforms such as Google Earth Engine (GEE) make it possible to efficiently analyse
large amounts of remote sensing data without having to store or download it locally
(Amani et al. 2020; Gorelick et al. 2017).

The use of remote sensing data to investigate offshore infrastructure condition and
development via automatic detection has become increasingly prevalent in recent years.
While early work primarily made use of the high thermal and optical contrast of gas flares
in infrared data (Casadio, Arino, and Minchella 2012), synthetic aperture radar (SAR)-based
methods have now become the predominant approach, due to their ability to operate
under all weather conditions and strong sensitivity to metallic sea-surface targets such as
ships, platforms, and wind turbines.

Conventional approaches often employ constant false alarm rate (CFAR) detectors or
threshold-based methods combined with geometric or multiscale filters to extract poten-
tial offshore targets (Cheng et al. 2013; Marino, Velotto, and Nunziata 2017; J. Zhang,
Wang, and Su 2019). Multitemporal composites are used to effectively isolate static
backscatter signatures of man-made structures and suppress moving targets, both
using purely SAR-based methods (Wong, Thomas, and Halpin 2019) and in combination
with optical data (W. Xu et al. 2020). Furthermore, both optical-based (Liu et al. 2019) and
SAR-based studies (T. Zhang et al. 2021) demonstrate that offshore infrastructure can be
automatically extracted on a global scale.

The development of robust deep learning models for SAR data continues to remain
challenging due to small object sizes and the limited availability of high-quality training
data. Several studies demonstrate that targeted architectural or preprocessing adjust-
ments can counteract these challenges. These include hybrid or multi-stage pipelines that
combine convolutional feature extraction, morphological or sparse coding-based prepro-
cessing, and context and shape models to map small or finely structured targets more
reliably (Aghaei, Akbarizadeh, and Kosarian 2022a; Ghara, Fatemeh, and Akbarizadeh
2022; Samadi, Akbarizadeh, and Kaabi 2019; Sharifzadeh, Akbarizadeh, and Seifi Kavian
2019; Taibi, Akbarizadeh, and Farshidi 2019; Tirandaz, Akbarizadeh, and Kaabi 2020). In
addition, hybrid classification chains demonstrate the potential of sequentially linking
empirical and deep learning methods to reduce false alarms in complex maritime scenes
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(Blondeau-Patissier et al. 2023). Furthermore, lightweight, speckle-robust backbones and
cross-domain architecture designs improve transferability with limited ground truth
(Aghaei, Akbarizadeh, and Kosarian 2022b; Davari, Akbarizadeh, and Mashhour 2022).

A related approach to overcoming limited training data is SyntEO, a framework for the
generation of synthetic training samples (Hoeser and Kuenzer 2022b). Using this,
DeepOWT successfully extracts offshore windfarms and turbines from Sentinel-1 (S1) on
a global scale (Hoeser and Kuenzer 2022a; Hoeser, Feuerstein, and Kuenzer 2022). Recent
work is pursuing multimodal or architecturally enhanced approaches, for example,
through the fusion of SAR and multispectral data or the use of pseudo-Siamese models,
which better leverage complementary modalities (Ma et al. 2024; Paolo et al. 2024; Qiu
et al. 2024; X. Zhang et al. 2025). Beyond this, machine learning-based SAR applications,
such as the derivation of hub-height-related wind fields from S1 (Montera et al. 2022),
underscore the broad potential of data-driven methods for maritime analysis.

Existing research often addresses detecting offshore infrastructure in regionally limited
study areas, using multi-temporal composites to remove moving targets and extract static
signatures of offshore infrastructures. Nevertheless, key challenges remain, including the
limited availability of annotated training data, the limited generalizability across regions, and
the high computational effort required to process large remote sensing datasets. Because of
this, deep learning methods are frequently used in this field (Spanier and Kuenzer 2024).

The motivation for this study is based on the importance of an optimized training
strategy for deep learning-based object detection in EO data. The study evaluates the
effects of these optimizations using established YOLO base models, which are known for
their efficiency and high detection performance. The central contributions of this work
can be divided into four main aspects:

e The incorporation of synthetic data which significantly improves detection perfor-
mance, especially for underrepresented targets.

e Aregion holdout strategy enabling model generalization and geographical transfer-
ability of the models beyond the training areas.

¢ The introduction of a fully trainable offshore platform detection framework based on
the GEE and the Google Cloud Platform (GCP), which delivers robust results for
hotspot regions of maritime infrastructure.

e A scalable approach that can be applied to the entire S1 archive, enabling global
detection and spatiotemporal analysis.

2. Materials and methods
2.1. Study regions

The study focused on seven regions known for their abundance of offshore energy
infrastructure, particularly oil, gas, and wind: the North Sea (NS), Persian Gulf (PG), Gulf
of Mexico (GoM), South China Sea (SCS), Caspian Sea (CS), Gulf of Guinea (GoG), and the
Coast of Brazil (CoB) (Figure 2). The latter four regions were used to train the object
detection (OD) model, while NS, PG, and GoM served for inference. This region-holdout
setup enabled evaluation of model generalization and geographic transferability beyond
the training areas. The boundaries of the inference regions (NS, PG, GoM) followed the
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Figure 2. Overview of the seven study regions: South China Sea (SCS), the Caspian Sea (CS), the Gulf of
Guinea (GoG), and the coast of Brazil (CoB) used for training (orange) and North Sea (NS), the Gulf of
Mexico (GoM), and the Persian Gulf (PG) used for testing (red). The boundaries of the inference regions
are based on the boundaries defined by the International hydrographic Organisation (IHO 2018), while
the training regions were defined manually (yellow). In addition, the map displays the spatial
distribution and image acquisition count of Sentinel-1 SAR scenes that overlap with the global coasts
in 2023Q4. It demonstrates the significant regional variation in acquisition density (higher density in
Europe, lower density in America and Asia) and the geographical separation between training and test
data, which is used to evaluate the geographical transferability of the model.

official definitions of the International Hydrographic Organisation (Flanders Marine
Institute 2018). While the training regions were informed by this data, they were ulti-
mately manually delineated to focus primarily on the targeted coverage of areas of high
platform density rather than formal regional delineation.

2.2. Image acquisition and preprocessing

SAR imagery from the European Space Agency (ESA) Copernicus S1 mission (ESA 2025a)
was used due to its proven reliability for detecting metallic sea-surface targets, indepen-
dence of weather, global coverage, high spatial and temporal resolution, and free access
(El-Darymli et al. 2013; Spanier and Kuenzer 2024). The S1 constellation comprises two
C-band SAR satellites. S1A (launched 2014) and S1B (2016), in sun-synchronous orbits with
a 180° phase offset, providing a 6-day combined revisit. Due to the failure of S1B in 2021
and the selected time of interest (TOI), the fourth quarter of 2023 (2023Q4), this study
used S1A only. The resulting delayed revisit rate of approximately 12 days is a temporary
limitation which reduces the number of available SAR acquisitions for our 3-month
median composite. This was taken into account when selecting the composite length,
so that the effect remains minor for the 2023Q4 study period. However, a change in
acquisition frequency may become more relevant for longer study periods and when
combining different revisit cycles. Additionally, acquisition frequency varies regionally
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with orbital overlap and mission priorities, resulting in denser coverage over Europe (ESA
2025a) (Figure 2).

We used the Ground Range Detected (GRD) Level-1 product provided by GEE (GEE,
Google Earth Engine and ESA 2025), which processes the backscatter coefficient (0°) in
decibels (dB). Each scene was preprocessed in the following steps: orbit data correction,
removal of edge artefacts and thermal noise, radiometric calibration, and terrain correc-
tion. For our analysis, we used VH polarization data in Interferometric Wide (IW) Swath
mode, with a spatial resolution of approximately 10 m. The S1 archive was queried for all
scenes acquired during the TOI 2023Q4, and for the regions of interest (ROI), the SCS, CS,
GoG, and CoB (for model training) and the NS, GoM, and PG (for testing). To enable
efficient data handling and export on GEE, we applied a grid over the ROIs (Figure 2). The
grid was based on the tiling system of S2 that subdivides Earth into a predefined set of
tiles (UTM/WGS84), using a 100 km step. However, each tile has a surface area of 110 x
110 km to provide a large overlap with the neighbouring tiles (ESA 2021).

These image tiles were preprocessed, using the GEE API, to create deep-learning-ready
inputs and to remove transient or mobile objects. First, all image tiles were stacked and
reduced to a median composite. This temporal aggregation effectively removed moving
or temporary objects and thus reduced potential false positives even before model
inference (Wong, Thomas, and Halpin 2019). A total of 928 median-composite tiles across
all study sites were generated and exported (Table 1).

To minimize data volume, the median composites were converted from 16-bit floating
point (backscatter amplitude in dB) to 8-bit integers by clipping and linearly mapping the
backscatter signal range of —40 dB to 0 dB onto values 0 to 255. The resulting tiles were
then further tiled into 640 x 640 pixel chips with a 20% overlap, input sizes compatible
with the DL model, and to prevent boundary artefacts.

On SAR images, offshore platforms appear as bright backscatter clusters in front of the
darker sea with a low backscatter coefficient (Figure 3). The backscatter signal of
a platform is larger than its actual size. For example, the signal of a 120 X 70 m platform
can be approximately 290 X 230 m on a radar image. The signal is caused by several
backscatter effects, including direct reflections from the highest structures of the platform
(layover), double reflections between the platform’s vertical structures and the sea sur-
face, and triple reflections (or even higher order) between the platform and the surround-
ing sea surface (Jackson and Apel 2004; Marino, Velotto, and Nunziata 2017). Figure 3
illustrates the complexity of platform types and their backscatter signals on S1 SAR
images. As mentioned above, they differ in their functionality, shape, and size, and

Table 1. Summary of Sentinel-1 satellite imagery downloaded and used for each study
region in 2023Q4. The table demonstrates the significant regional variation in data
availability, particularly with regard to acquisition density.

Regions of interest approx. area (km?) S1 scenes median comp. tiles
North Sea 570,000 852 94
Persian Gulf 250,000 291 51
Gulf of Mexico 1,340,000 554 199
South China Sea 2,050,000 946 363
Caspian Sea 400,000 457 69
Gulf of Guinea 820,000 354 109
Coast of Brazil 150,000 57 44

Sum X 351 928




INTERNATIONAL JOURNAL OF REMOTE SENSING . 7

Figure 3. Examples of the structural and radar image diversity of offshore platforms in Sentinel-1 SAR
data. This figure shows optical aerial images (left) and the corresponding S1 images (right) for (a—c)
individual offshore platforms, (d—g) complex platform clusters, and (h) an offshore wind farm with
turbines and a substation. The figure demonstrates the high variability in shape, extent, and back-
scatter signature, especially in platform clusters. Aerial imagery retrieved from commons.Wikimedia.
org, credit to (Komen 2008; Petrobras 2009; Raudgy 2016; Roletschek 2011).

whether they are single platforms or multiple interconnected platforms, as well as in their
resulting backscatter signal. We have assigned a dedicated class for wind turbines as off-
targets in our dataset. Detecting them is an important step, as their backscatter signals are
similar in strength to those of platforms (Figure 3h) and can lead to misclassifications. Due
to their distinct radar signature, their detection and separation from platforms is possible
(Hoeser, Feuerstein, and Kuenzer 2022; Wong, Thomas, and Halpin 2019; W. Xu et al. 2020;
T. Zhang et al. 2021).

2.3. Ground truth data

For model training and testing, a comprehensive and consistent ground truth (GT) dataset
was established. As explained in the previous chapter, some of the platforms are complex
structures consisting of several individual platforms (referring hereinafter as platform
clusters) (Figure 3d-g). Platform clusters comprise all occurrences consisting of more
than one individual platform; in other words, contiguous platform complexes
(Figure 3d-g). Multiple closely spaced backscatter signals from individual platforms result
in stronger and blended noise in the S1 radar image, which manifests itself as a coherent
complex backscatter signal. Individual platforms can hardly be derived from this, which is
why we have labelled each complex as a single object. The goal of this study was to
identify platforms in general. We did not label these objects as platforms, but rather as
platform clusters to test whether we could optimize our model performance by treating
single platforms and platform clusters separately during training and then combining
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them into a unified platform class for evaluation. We therefore defined three classes: single
platforms, platform clusters, and wind turbines (off-targets). The classes were assigned
based on their spatial footprint as seen in the ST images, and not on the basis of their
structural typology (as in Figure 1).

Label creation was performed manually by a trained annotator based on a defined
protocol. The primary reference, ST GRD imagery from 2023Q4, was supported by
Sentinel-2 MSI imagery, high-resolution optical data from DigitalGlobe (Google Earth),
and auxiliary datasets such as vector layers and web-based infrastructure databases
(Table 2). On this basis, separate GeoJSON files were created for each ROl and class,
where each GeoJSON represented precise segmentation masks for each class’s respective
backscatter signature. Single platforms were only assigned if there was a clearly isolated
signature. Two or more spatially connected platforms (for example, via walkways or
bridge structures) were classified as platform clusters. Typical borderline cases involved
individual platforms located very close to each other, whose signatures partially merge
visually in the SAR image. In such cases, high-resolution optical data were used to assess
whether multiple signatures actually represent separate objects or functionally belong to
a cluster (see Figure S1 in the supplementary materials).

To ensure label quality, all polygons were systematically compared with the additional
data listed in Table 2. Cross-validation among multiple data sources ensured positional
accuracy and minimized labelling errors, providing a reliable foundation for consistent
ground truth generation. Bounding boxes (bboxes) were then derived from the final
vector masks. The final GT dataset for all seven areas comprised more than 14,000
polygons (41% single platform, 4% platform cluster, 55% wind turbine) (Table 3).

To avoid data leakage and ensure independent evaluation, training, and test datasets
of pairs of image chips and labels (referring hereinafter as image-label pairs) were kept

Table 2. Overview of auxiliary data used for the labelling process of the ground truth dataset.

Dataset Year Coverage Source

S1 GRD SAR imagery 2023 globally ESA (2025a)

S2 MSI imagery 2023 globally ESA (2025b)

DigitalGlobe imagery - globally

Global Energy Monitor 2025 globally Global Energy Monitor (2025)
OpenSeaMap 2025 globally OSM (2025b)

4C Offshore 2025 globally (4C Offshore 2025)

North Sea Energy 2022 North Sea North Sea Energy (2025)
OSPAR 2023 North Sea (OSPAR 2025)

BOEM 2024 Gulf of Mexico BOEM (2024)

Table 3. Overview of all ground truth labels collected per study region, by class type. The table
shows regional differences in object distribution and the occurrence of classes. Compared to
single platforms and wind turbines, the platform cluster class is notably underrepresented.

Study regions single platform platform cluster wind turbines sum X
North Sea 418 80 4,949 5,447
Persian Gulf 1,550 163 1,713
Gulf of Mexico 1,562 187 1,749
South China Sea 1,054 98 2,920 4,072
Caspian Sea 3N 81 392

Gulf of Guinea 932 89 1,021

Coast of Brazil 33 3 36
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strictly separate. All GT image-label pairs from the SCS, CS, GoG, and CoB were used for
model training, while pairs from the NS, GoM, and PG served exclusively for testing.

The image-label pairs used for model training were randomly divided into 90% training
and 10% validation subsets to track model performance during training. We ensured that
image chips originating from the same image tile were not split between sets. The entire
set of 8909 labels from NS, GoM, and PG constituted the fixed test dataset, which
remained constant across all experiments to ensure comparability.

The entire training set comprised 5521 labels, with only 271 labels belonging to the
platform cluster class (Table 3). This highlights the significant underrepresentation of this
class, which, if not balanced, would disappear in the training signal due to the dominance
of single platforms and wind turbines. To improve training stability and model general-
ization, we aimed for an approximately balanced distribution among the three classes.
Since obtaining additional labels was not feasible due to the limited availability of real-
world samples, two potential strategies remained: expanding the dataset with platform
clusters from new regions or generating synthetic data to increase the number of image-
label pairs.

2.4. Synthetic data generation

We wanted to generate synthetic data and integrate it into training to optimize and improve
our training data through better generalization. The effects of this are a key focus of this
study. With the synthetic data, we wanted to increase the number of image-label pairs,
especially for the underrepresented class of platform clusters. Instead of oversampling the
class by duplication of samples together with data augmentation (such as clipping, rotation,
scaling, and mosaicking), we expected significantly better detection performance by gen-
erating images that are completely new to the model. Therefore, the goal was to create
synthetic data that closely resembled real-world, hand-labelled S1 samples in appearance
and diversity. For that task, we used the SyntEO framework (Hoeser and Kuenzer 2022b),
a comprehensive toolkit for creating custom synthetic EO data.

SyntEO composes a remote sensing scene from 2D discrete objects and background
entities. Sensor-specific textures are then applied to simulate radar signatures, while the
geometric composition provides bbox annotations. We extended the original SyntEO
toolset to include routines for generating platform cluster geometries, in addition to
single platforms and wind turbines. Two aspects were crucial in the entire process of
generating synthetic data: full automation and randomization to produce thousands of
diverse image-label pairs simultaneously, and minimizing the risk of the model learning
artificial or repetitive patterns. To ensure natural variability, the appearance and config-
uration of each synthetic object differed across scenes. The overall workflow is summar-
ized in Figure 4, which illustrates the main processing stages adopted in this study. For
a detailed technical description of SyntEO, refer to Hoeser and Kuenzer (Hoeser and
Kuenzer 2022b).

(1) Input data consisted of randomly selected S1 scenes in WGS84 projection
(EPSG:4326) from around the world. We defined the image extent in pixels and
ensured a representative mix of open-sea, coastal, and land scenes. Images con-
taining interfering objects, such as existing platforms, wind turbines, aquaculture,
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Figure 4. Simplified schematic overview of using the SyntEO framework to generate synthetic training
data of platform clusters. Based on real Sentinel-1 scenes, suitable maritime regions are identified,
procedural cluster geometries are generated, and clusters are integrated into the scene using texture-

based

backscatter kernels. The figure illustrates the modular structure of the approach and the

separation of geometry and texture modelling.

3)

(4)

(5)

or lighthouses, were removed using a thresholding process to obtain ‘empty’
marine area entities suitable for synthetic insertion.

Images were processed with SyntEO to derive coherent 2D entities for sea, coast,
and land. The land entity was determined from the OSM Land Polygon Vector
dataset (OSM 2025a). A 1 km buffer from land defined the coast entity, and the
remaining area defined the sea entity. Within the sea entity, we created a grid of
potential object anchor points (candidate entities). These points were randomized
per scene, creating a ‘canvas’ for placing synthetic objects.

To realistically reproduce platform clusters, we first analysed real S1 radar signa-
tures to identify common geometric features. Each cluster could be effectively
described as a set of lines and points arranged along those lines. We generated
random cluster geometries defined by meta parameter values such as the number
and length of lines, connection angles, and point spacing (see Table S1 for the
complete set of parameter ranges used).

Each geometry was randomly rotated and placed in the scene at one of the
candidate points of our grid.

Radar backscatter was simulated by applying KDE2D kernels, which create an
overlay of Gaussian-like point scatter functions, to the points of the previously
generated cluster geometries. The kernel parameters were randomly sampled from
predefined ranges, such as size and intensity, for each point to ensure high variance
in the resulting textures (see Table S1 for the complete set of parameter ranges
used). A separate additive or multiplicative speckle model was not implemented,
meaning that the generated textures are based solely on the overlaid kernels. The
textured geometries were then inserted into the prepared S1 scenes, resulting in
complete synthetic images. Bbox annotations were automatically derived from
object extent and position. Representative examples comparing synthetic and real-
world scenes are shown in Figure 5.

2.4.1. Datasets
Five training datasets were compiled based on combinations of real and synthetic image-

label

pairs. The composition of these datasets is summarized in Table 4. The ‘base’ training

dataset consisted of GT from SCS, CS, GoG, and CoB, with single platforms and platform
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synthetic

real-world

Figure 5. Comparison between synthetic scenes of platform cluster occurrences made by the SyntEO
workflow (top) and scenes from the real world (bottom).

Table 4. Composition of training and evaluation datasets with the number of bounding boxes per
object class. The different training strategies and the fixed evaluation dataset are shown. An asterisk
(*) indicates synthetically generated training samples. The table illustrates the addition of synthetic
samples in different proportional steps to address class imbalances and investigate the scalability of
training.

Dataset single platform platform cluster wind turbines Sum ¥
Base (SCS, CS, GoG, CoB) 2,601 2,920 5,521
Split (SCS, CS, GoG, CoB) 2,330 271 2,920 5,521
Cluster-enriched 2,330 271 + 2206* 2,920 7,727
Fully balanced 2,333 + 2677* 271 + 4729* 2,920 + 2080* 15,000
Synthetic-only 5,000* 5,000* 5,000* 15,000
Evaluation (NS, PG, GoM) 3,530 430 4,949 8,909

clusters as a combined class, while the ‘split’ dataset split these two classes. To systematically
assess the impact of synthetic training data, three additional datasets were created. In the
cluster-enriched dataset, synthetic image-label-pairs were added to the underrepresented
platform cluster class, resulting in a more balanced distribution across all three classes
(2,330-2,920 pairs each). The fully balanced dataset was generated by augmenting all
three classes with synthetic examples to reach 5000 pairs per class. Finally, a synthetic-only
dataset was produced to test model performance when trained exclusively on synthetic data.

For evaluation, a fixed test dataset containing real-world GT labels from the NS, PG, and
GoM was used across all experiments to ensure consistency and comparability.

2.5. Offshore platform detection pipeline

We employed version 10 of the YOLO OD algorithm family, released in May 2024 (A. Wang
et al. 2024), to evaluate the effects of optimized training strategies for deep learning-
based object detection in EO data and detecting offshore platforms in our test regions.
YOLO is established and widely used in EO (Hoeser and Kuenzer 2020; Hoeser, Bachofer,
and Kuenzer 2020). We chose YOLOvV10, a one-stage detector, because it offers a more
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efficient ratio of accuracy to latency and computational cost compared to other estab-
lished detectors, especially two-stage detectors such as Faster R-CNN. For resource-
efficient processing of large-scale EO data in GCP, such models are crucial for reducing
runtime and hardware requirements. Compared to its predecessor, YOLOvS, version 10
uses a slimmer, NMS-free training architecture that supports stable detection of small,
variable objects. Furthermore, while YOLOvVS8 offers broader multi-task functionality, this is
not required for our purely object detection-based application.

The YOLOv10 model takes the S1 scenes as input, processes them through
a convolutional neural network (CNN), and outputs the probabilities of the predefined
classes: single platform, platform cluster, and wind turbine.

An overview of the detection workflow is shown in Figure 6, and the fundamentals are
described in the following four stages.

(1) Model training: Various training scenarios were developed and tested under three
distinct training scenarios: training solely with real data, training solely with syn-
thetic data, and training with real and synthetic data combined (Table 4). The
central research question was how synthetic data would influence model perfor-
mance and geographic generalization. We hypothesized that the targeted inclu-
sion of synthetic samples would lead to a measurable improvement in accuracy
and robustness. To prepare the trained models for Inference, the trained YOLOvV10
artefacts were exported as a TorchScript model, packaged using the Torch-Model-
Archiver (Meta Al 2025), and uploaded as a deployable artefact.

Inference: Model management and inference were carried out on the GCP. We
utilized Vertex Al, GCP’s machine-learning service, for model deployment and
inference. Model endpoints were created on Vertex Al, and cloud CPUs were

(2)
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Figure 6. Workflow of the deep learning-based offshore platform detection pipeline. The workflow
includes the key processing steps from S1 data acquisition and preprocessing, through the creation of
real and synthetic training datasets, model training and packaging, to inference, post-processing, and
evaluation. The workflow illustrates the separation between cloud-based and on-premise components
as well as the scalability of the pipeline for large-scale applications.



INTERNATIONAL JOURNAL OF REMOTE SENSING 13

provisioned to perform inference over the preprocessed image chips. Importantly,
all satellite data remained on the GCP; only prediction outputs were exported as
text files containing detection metadata and geolocation. This design minimized
data transfer and reduced cost by limiting billing to compute time only.

(3) Postprocessing and evaluation: After inference, the predictions from all image
chips were merged into a single dataset. Bboxes were reprojected to EPSG:4326
(WGS84) to enable spatial operations, and each detection was assigned a unique
identifier. Predictions below the defined confidence threshold of 0.5 were dis-
carded. To suppress noise, detections where all pixels were below 150 (= —16.5
dB) were removed. This threshold was derived from the analysis of radar back-
scatter characteristics of verified platforms in the 8-bit ST composites. Figure S2 in
the supplementary materials illustrates the effect of this threshold on predictions
on a sample S1 scene. To reduce duplicates caused by tile overlap, overlapping
detections were grouped using an intersection-over-union (loU) threshold of 0.2.
For each group, the most reliable prediction was selected based on class consensus
and confidence score. The threshold values used for confidence, pixel value, and
loU grouping were informed by an ablation analysis in which we evaluated the
effects of different threshold combinations on precision, recall, and F1 score
(Supplementary Material Table S2). The cleaned detection set was exported as
GeoJSON for further spatial analysis.

3. Results

To verify the effectiveness of the methods developed in this study, various training
experiments were conducted and tested, resulting in a model that efficiently and accu-
rately detects offshore platforms on S1 radar images and generalizes reliably to previously
unseen regions, thus being geographically transferable and scalable. First, the results of
the training experiments and the influence of synthetic training data are described before
finally the results of the best model are presented.

3.1. Training experiment results and synthetic data influence

For the experiments, we used pretrained YOLOv10n and s, and v11n model variants (as
provided by A. Wang et al. 2024) that were finetuned with the respective training datasets.
After 50 epochs, training was finished by an early stopping mechanism, tracking the
validation performance. For testing, we compared model predictions against the GT of
our fixed test dataset using a confidence threshold of 0.5, ensuring that only predictions
with a probability of over 50% were considered. Further, predictions overlapping a GT
object with a higher loU value of 0.3 were counted as TPs, while lower overlaps were
counted as FPs, and undetected GT objects as FNs. Due to the very small spatial extent of
offshore platforms in Sentinel-1 data, an loU threshold of 0.3 was used. In our tests, this
resulted in an F1 score that was 0.03 higher than a threshold of 0.5. In the base experi-
ment, loU matching was performed with separate GT classes for single platform and
platform cluster. In all other experiments, both the model predictions and the correspond-
ing GT labels were merged into a uniform platform class before evaluation. The loU
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distributions for single platforms and platform clusters (before merging) and the corre-
sponding mean values are shown in Figure S3 in the supplement materials. The results of
all experiments are summarized in Table 5.

In the first experiment, we employed the smallest YOLOv10 variant (10n, 2.3 million
parameters), trained on the base dataset. Despite its compact size, the model achieved
strong performance, correctly detecting 3537 of 3960 platforms (F1 = 0.82). Using the split
dataset next allowed training of single platforms and platform clusters instead of them
being combined. The intermediate results (before merging the single platforms and plat-
form clusters into a uniform class) showed that the model achieved an F1 score of 0.85 for
single platforms and 0.42 for platform clusters. This highlights the model’s difficulties in
recognizing platform clusters. However, these intermediate results still contain misclassi-
fications between single platforms and platform clusters, which are eliminated in the final
result by merging the classes. With an F1 score of 0.84, which is higher than in the first
experiment, our assumption that the best recognition results for platforms can be
achieved if the classes are first separated and only merged again after training and
inference was confirmed. We therefore retained this approach for the following
experiments.

Using YOLOv11n (2.6 million parameters) in the next experiment did not improve the
results, while switching to larger weights (v10s, 7.2 million parameters) slightly increased
the F1 score to 0.85. Although even larger models (m, |, x) might have yielded marginal
gains, we decided against them to ensure scalability when performing inference on GCP
or other compute environments.

The subsequent experiments evaluated the influence of synthetic data on model
performance. Since the platform cluster class was severely underrepresented and achieved
F1 scores below 0.48 in the previous models, we enriched the training data with over 2000

Table 5. Results of the training experiments on the fixed evaluation dataset. The table shows the
impact of different training strategies and pre-trained YOLO models used on detection performance. It
highlights the advantages of combining real and synthetic data, but also reveals the limitations of an
exclusively synthetic training strategy.

Dataset YOLO model Class GT TP FP FN Pr  Rc F1

Base 10n (2.3M single platform + platform 3,960 3,537 1,115 423 076 0.89 0.82
params) cluster

Split 10n (2.3M single platform 3530 2,983 509 547 0.85 085 0.85
params) platform cluster 430 173 223 257 044 040 042
platform 3960 3,319 569 641 0.85 0.84 0.84
Split 11n (2.6M single platform 3,530 3,011 552 519 085 0.85 0.85
params) platform cluster 430 274 479 156 036 0.64 0.46
platform 3960 3,475 841 485 0.81 0.88 0.84
Split 10s (7.2M single platform 3,530 3,025 567 505 0.84 086 0.85
params) platform cluster 430 210 242 220 0.46 049 048
platform 3960 3,387 657 573 0.84 0.86 0.85
Cluster- 10s (7.2M single platform 3,530 3,036 419 494 0.88 0.86 0.87
enriched params) platform cluster 430 240 63 190 079 056 0.65
platform 3,960 3,412 346 5483 0.91 0.86 0.88
Fully balanced 10s (7.2M single platform 3,530 3,083 438 447 088 0.87 0.87
params) platform cluster 430 255 95 175 073 059 0.65
platform 3960 3,523 348 437 0.91 0.89 0.90

Synthetic-only 10s (7.2M single platform 3530 M 54 3,519 0.17 0.00 0.01
params) platform cluster 430 0 0 430 0.00 0.00 0.00

platform 3,960 13 52 3947 0.20 0.00 0.01
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synthetic cluster samples to balance the class distribution. This adjustment is particularly
evident in the intermediate results: for the platform clusters, precision improved signifi-
cantly from 0.46 to 0.79 and the F1 score from 0.48 to 0.65, with 30 more TPs and 179
fewer FPs. This improvement carried over to the overall result for the unified platform class
(Pr=0.91, Rc=0.86, and F1 =0.88), the best result at this stage. To test whether a wider
balance across all classes would further improve performance, the training data was
expanded to 5000 samples per class with synthetic samples. This approach improved
recall in the intermediate results of the single platforms and platform clusters while
maintaining high precision, leading to our best overall performance of the unified plat-
form class (Pr=0.91, Rc=0.89, F1 =0.90). Finally, to determine the upper limit of the
usability of the synthetic data we generated, the model was trained with 5000 synthetic
samples per class exclusively. With this approach, we were unable to generalize the model
to real images. The model achieved precision and recall close to zero. The model was
apparently unable to learn or derive the features of the classes from synthetic data alone,
which it needed in order to subsequently recognize the objects in the real data. We can
assume that the model only learned synthetic specific features that could not be trans-
ferred to real scenes. Accordingly, we suspect a potential bottleneck in the data generated
with SyntEO up to this point. Improving the designed textures could lead to significant
detection performance (Hoeser and Kuenzer 2022b; Hoeser, Feuerstein, and Kuenzer
2022) and further increase performance when integrated with real-world data.

The experiments demonstrate both the effectiveness and limitations of synthetic data
in training deep learning models for EO applications. Synthetic data significantly
improved performance when combined with real-world data, particularly through class
balancing. However, real-world examples remained indispensable.

3.2. Detection results and geographic transferability

The “fully balanced” model achieved the best overall performance and was used to extract
offshore platforms in the three unseen test regions of the NS, GoM, and PG. Figure 7
provides an overview of the detections of offshore platforms in these regions for 2023Q4
and shows the spatial distribution of this offshore infrastructure for these high-energy-
producing regions. In total, the model detected 3529 offshore platforms, corresponding
to a recall of 0.89 and an F1 score of 0.90. The detection performance varied slightly from
region to region: 411 platforms were detected in the NS (Rc = 0.83), 1519 in the GoM (Rc =
0.87), and 1593 in the PG (Rc = 0.93). Furthermore, with an expected calibration error (ECE)
of 0.12, the model demonstrates satisfactory calibration of the confidence intervals out-
put, with a slight overconfidence occurring as expected, since offshore platforms com-
prise only a few effective pixels and speckle-related variability reduces signature stability.

Geographically, the detection maps show that the model was able to reliably general-
ize to previously unseen regions, proving its robust transferability beyond the training
areas (CS, SCS, GoG, and CoB). The dense arrangement of platforms in the central NS, the
northern GoM, and the agglomerations in the oil fields in the PG is captured with high
spatial accuracy, and even smaller installations near the coast are reliably detected.

The model showed high sensitivity to different platform types, from single installations
to complex platform clusters. These results demonstrate the model’s ability to adapt to
varying regions with different environmental conditions, detection geometries, and
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Figure 7. Offshore platform detection results in the three test regions North Sea, the Gulf of Mexico,
and the Persian Gulf, for 2023Q4, based on the preprocessed S1 median composites and by the fully
balanced model, which outperformed all other models tested in this study. The enlarged images show
various challenging areas that are often crowded with different types of platforms (b-f). Wind turbines
could be effectively separated from offshore platforms such as substations in a wind farm (a).
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Figure 8. Confusion matrix of the postprocessed detection results of the final model on the fixed
evaluation dataset. Correct classifications and misclassifications between offshore platforms, wind
turbines, and background are shown. The matrix illustrates the high level of discrimination between
platforms and wind turbines, as well as the remaining false positive and false negative detections.

structural complexities, confirming its potential for scalable global mapping of offshore
infrastructure. Notably, it was possible to detect the off-target class of wind turbines with
an F1 score of 0.97, which allowed them to be separated from platforms effectively.
Distinguishing substations in offshore wind farms from turbines is a crucial step of
particular importance for refining the detection of offshore wind farms (W. Xu et al.
2020; Z. Xu et al. 2022; T. Zhang et al. 2021).

Figure 8 shows the corresponding confusion matrix of the final model. It shows high
accuracy for both the platform class and the wind turbine off-target class (89% for plat-
forms, 96.6% for wind turbines). Misclassifications were low and are discussed in Section 4.

Overall, the results confirm that YOLO-based object detection on S1 radar images
provides a reliable and transferable framework for the automatic identification of offshore
platforms in various marine environments.

4, Discussion

In all three test regions, the North Sea, Gulf of Mexico, and Persian Gulf, 3523 of 3960
platforms (89%) were correctly identified, with 422 unidentified (FN) and 312 platforms
predicted where none exist (FP). The model performed better on the off-target class of
wind turbines: 4783 of 4949 turbines (96.6%) were correctly identified, with only 51 cross-
class misclassifications. This result demonstrates that the model is capable of reliably
distinguishing structurally similar objects on SAR data and underscores the robustness of
YOLOv10-based feature extraction, despite this object class not being the focus of the
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training. It further underscores that while the model generalizes reliably across all classes,
the detection of platforms remains the more complex task.

FNs were associated with the detection of very small platforms, particularly in the Gulf
of Mexico (Figure 9d), where numerous structures exist that are smaller than 100 m2. At
a spatial resolution of 10 m, such targets approach or fall below the effective pixel scale of
S1, making their reliable detection difficult. An important factor affecting FNs was the
trade-offs made with the chosen confidence and loU thresholds. Strict thresholds reduced
the number of FPs, but unavoidably excluded some TPs with lower confidence. These are
mainly very small individual platforms in coastal areas where calm sea conditions or
shadowing effects further weaken the backscatter signal. Through iterative tuning,
a balance was found that minimized overall error. The fact that higher FN rates occur
predominantly where platforms are very small (especially in the Gulf of Mexico) is also
reflected in Table S3 (supplementary materials), which provides a comprehensive com-
parison of regional environmental conditions. It also shows that low coverage density can
contribute to higher FN values. At the same time, some environmental parameters, such
as the significantly rougher sea conditions in the North Sea, deviate more strongly from
the training regions and correlate with regionally distinct recall rates.

Misclassifications were mainly associated with objects that generate radar backscatter
similar to that of platforms. These include, for example, buoys, lighthouses, and coastal
reefs (Figure 9a-b). Including additional off-target classes in the training dataset could
help to avoid such confusion for the model. However, the limited availability of real-world
reference data would likely require supplementation with synthetic samples.

In a few cases in the NS, the model also incorrectly classified wind turbines under
construction as platforms (Figure 9¢). These unfinished turbines, which consist only of the
foundation, are very similar to offshore platforms in both geometry and radar response.

Despite these challenges, the model performed particularly well in areas with
dense and complex offshore infrastructure, such as the AKAL oil field in the
southern GoM or the Upper Zakum field off the coast of the United Arab
Emirates, where there are several platform clusters and artificial islands

D True Positive D False Positive False Negative

Figure 9. Demonstration of exemplary misclassifications of the model in the test regions.
Misinterpretations of buoys and a lighthouse near Bremerhaven, Germany in the North Sea (a)),
reefs at the northern coast of Oman in the Persian Gulf (b)), wind turbine foundations at the gode
wind farm north of the Norderney island, Germany in the North Sea (c)), and undetected small
platforms to the southeast of New Orleans in the northern Gulf of Mexico (d)). The figure demonstrates
that misclassifications primarily occur with very small targets or with structurally similar off-target
objects with similar backscatter patterns.
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(Figure 7c¢, e). The accurate detection of such clustered targets demonstrates the
model’s ability to represent structural diversity and spatial context, capturing both
individual installations and large platform complexes.

This study also demonstrates the critical importance of incorporating synthetic
training data for the overall performance of the model. However, while synthetic
samples significantly improved performance, especially for underrepresented
classes, experiments with purely synthetic training data revealed distinct limita-
tions. As stated in the previous chapter, we suspect a potential bottleneck in the
data generated with SyntEO.

Further refinement of the synthetic training data will therefore be a key focus of
future work. As a first step, we plan to systematically quantify the domain gap
between real and synthetic S1 scenes. Comparative analyses of the distributions of
backscatter values, texture-based descriptors, and feature embeddings are planned
to more clearly determine whether the performance loss of the purely synthetically
trained model is due to texture differences, geometric simplifications, or label
structures. Further experiments will also be conducted to reduce FPs. These will
investigate whether the addition of specific off-target classes (e.g. buoys or light-
houses) to the synthetic data pool can further reduce the number of FPs. To this
end, we would first analyse these off-target objects on S1 median images and
derive characteristic patterns in terms of size, shape, and backscatter intensity. On
this basis, suitable geometries, textures and parameter values would be developed
and integrated into an initial test dataset per class to evaluate the effect on FP
rates.

In addition, future work will also consider alternative strategies for generating
synthetic SAR data in order to further improve texture and noise modelling. These
include physics-based SAR simulation approaches (e.g. Dong, Meng, and Guo 2023; He
et al. 2024), which explicitly model electromagnetic scattering processes and poten-
tially generate realistic backscatter patterns, but are currently not suitable for large-
scale training datasets due to their high computational complexity and the need for
detailed 3D geometries. Generative or domain-adaptive methods (e.g. Wu et al. 2024;
Zeng et al. 2024) are also promising. These methods derive SAR textures from real
examples using machine learning and are thus better able to replicate speckle-typical
patterns, but they require extensive training data and careful model stabilization.
Photogrammetric or 3D image-based methods (e.g. Jia, Yang, and Wu 2023; Luo
et al. 2025) also enable the realistic reconstruction of complex offshore structures
but are only suitable for global scaling to a limited extent due to the considerable
effort required for data acquisition and processing. SyntEO was deliberately chosen for
this study because it represents a lightweight, fully automatable, and highly scalable
procedural approach that does not require complex EM simulation, extensive 3D
models, or additional training processes, thus enabling the efficient generation of
large amounts of synthetic training data.

Overall, the results show that YOLO-based object detection on S1 radar images is both
robust and transferable to different marine environments, but sensitive to very small
structures and class ambiguity. Addressing these remaining challenges through targeted
dataset refinement and advanced synthetic data generation will be key to achieving
consistent mapping of offshore infrastructure on a global scale.
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5. Conclusion

In the fourth quarter of 2023, we detected a total of 3529 offshore platforms in
three of the most important regions of the global offshore energy infrastructure:
411 in the North Sea, 1519 in the Gulf of Mexico, and 1593 in the Persian Gulf. The
objects were detected by applying deep learning to ESA’s S1 radar data. In our
study, we demonstrated an approach that accomplishes the optimization of the
training process of the deep learning-based object detector by integrating syn-
thetic images with real EO data. Although synthetic data significantly improves
training performance, especially for underrepresented classes, the purely syntheti-
cally trained model showed almost no detection capability. Our results suggest
that the bottleneck lies less in the concept and use of synthetic data itself and
more in the currently designed SyntEO textures, whose backscatter and noise
modelling do not yet sufficiently reflect key aspects of real SAR signatures.
Further development of synthetic textures is crucial if synthetic data is to be
used not only as a supplement but also as a replacement in the future. Despite
this limitation, combined training with synthetic and real data shows that robust
and highly generalizable models can be developed that reliably recognize both
individual and complex groups of platforms and clearly distinguish substations
from turbines in offshore wind farms. Overall, the results underscore the high
robustness, generalizability, and transferability of the approach to previously
unknown areas.

The presented method contributes to addressing the current lack of up-to-date
and complete data on offshore infrastructure, which is crucial for resource manage-
ment, environmental protection, and marine surveillance. It provides a first step
towards an objective and scalable tool that can monitor changes in the inventory
and development of offshore platforms across broad spatial and temporal scales.
Overall, this approach marks an important step forward and offers new insights into
the transition to global, fully automated identification and monitoring of maritime
energy infrastructure. It creates a solid foundation for improving government and
scientific databases, supports more sustainable resource management, and contri-
butes to transparency and traceability of changes in the world’s oceans.

Future work will focus on further optimizing the proposed method and transferring it
into an operational context. Building on its successfully demonstrated regional transfer-
ability, the developed GCP framework provides the basis for global, near real-time
monitoring of the entire Sentinel-1 archive. This would enable continuous, automated
updating of the global inventory of offshore platforms, representing an important step
towards operational monitoring. In addition, the model will be applied to different
temporal scales to systematically record, analyse, and evaluate changes in maritime
energy infrastructure.
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