Rüter, Joachim und Dauer, Johann C. und Durak, Umut (2025) There is No Model to Beat Them All: Recommendations for Deep Learning Model Selection when Training on Synthetic Images. In: 23rd International Conference on Image Analysis and Processing, ICIAP 2025. Springer Nature Switzerland. International Conference on Image Analysis and Processing, 2026-09-15, Rom, Italien. doi: 10.1007/978-3-032-10185-3_14. ISBN 978-303210184-6. ISSN 0302-9743.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Synthetic training images generated with game-engines are a promising approach to enable the use of deep learning perception models in domains that lack diverse datasets. However, previous works have shown significant performance drops when these models are deployed to real-world scenarios and definite reasons and influences are not yet found. This paper builds on previous work investigating the influence of the model architecture on the sim-to-real generalizability and extends it by addressing key limitations. Based on an extensive study of 378 trained variations of 27 semantic segmentation models on an autonomous driving and an aerial dataset as well as the current literature, this work is the first to provide practical recommendations for selecting deep learning models when training on simulation images.
| elib-URL des Eintrags: | https://elib.dlr.de/221897/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | There is No Model to Beat Them All: Recommendations for Deep Learning Model Selection when Training on Synthetic Images | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2025 | ||||||||||||||||
| Erschienen in: | 23rd International Conference on Image Analysis and Processing, ICIAP 2025 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1007/978-3-032-10185-3_14 | ||||||||||||||||
| Verlag: | Springer Nature Switzerland | ||||||||||||||||
| ISSN: | 0302-9743 | ||||||||||||||||
| ISBN: | 978-303210184-6 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Synthetic Data, Sim-to-Real Gap, Deep Learning | ||||||||||||||||
| Veranstaltungstitel: | International Conference on Image Analysis and Processing | ||||||||||||||||
| Veranstaltungsort: | Rom, Italien | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsdatum: | 15 September 2026 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||
| HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Unbemannte Flugsysteme | ||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge Institut für Flugsystemtechnik > Sichere Systeme und System Engineering Institut für Flugsystemtechnik | ||||||||||||||||
| Hinterlegt von: | Rüter, Joachim | ||||||||||||||||
| Hinterlegt am: | 26 Jan 2026 15:45 | ||||||||||||||||
| Letzte Änderung: | 28 Jan 2026 13:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags