Anam, Khairul und Sudrajat, Ahmad und Rizal, Naufal Ainur und Intyanto, Gramandha Wega und Muldayani, Wahyu und Negara, Mohamad Agung Prawira und Sumardi, Sumardi und Bukhori, Saiful und Gitakarma, Made Santo und Castellini, Claudio (2025) Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods. Neural Computing and Applications, 37 (21), Seiten 16461-16485. Springer Nature. doi: 10.1007/s00521-025-11337-9. ISSN 0941-0643.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://link.springer.com/article/10.1007/s00521-025-11337-9
Kurzfassung
Despite decades of research in prosthetics and myocontrol, using electromyography (EMG) to accurately predict the force a user grasps an object with is still a subject of investigation. Although the problem seems trivial, the optimal EMG setup, able to deliver high prediction accuracy at a minimal economic and computational cost needs to be found. In this work, we compare several EMG setups consisting of one to eight sensors and deep learning methods to find out which combination is most convenient. In particular, we compare long short-term memory (LSTM), together with a stacked autoencoder (LSTM-SAE) and an attention mechanism (LSTMATT). Our experimental results reveal that, while the best performance is attained by LSTM-SAE (coefficient of correlation 0.9867 +- 0.0087, coefficient of determination 0.9676 +- 0.0489, normalized root mean square error 0.048 +- 0.0213), statistically significant differences can only be found when the number of sensors is drastically reduced, namely to 2 sensors, in which case, anyway, the performance is still close to optimal and even surpasses state-of-the-art methods. Further research will focus on testing the optimal approach and setup online on amputated users using prosthetic hardware in daily living activities.
| elib-URL des Eintrags: | https://elib.dlr.de/221690/ | ||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||
| Titel: | Evaluation of LSTM for predicting grip strength using electromyography: a comparison of setups and methods | ||||||||||||||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||
| Datum: | 3 Juni 2025 | ||||||||||||||||||||||||||||||||||||||||||||
| Erschienen in: | Neural Computing and Applications | ||||||||||||||||||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
| Band: | 37 | ||||||||||||||||||||||||||||||||||||||||||||
| DOI: | 10.1007/s00521-025-11337-9 | ||||||||||||||||||||||||||||||||||||||||||||
| Seitenbereich: | Seiten 16461-16485 | ||||||||||||||||||||||||||||||||||||||||||||
| Verlag: | Springer Nature | ||||||||||||||||||||||||||||||||||||||||||||
| ISSN: | 0941-0643 | ||||||||||||||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||
| Stichwörter: | Grip strength prediction, Stacked autoencoder, LSTM, Attention mechanism | ||||||||||||||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
| HGF - Programmthema: | Forschung unter Weltraumbedingungen | ||||||||||||||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R FR - Forschung unter Weltraumbedingungen | ||||||||||||||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Mensch-Maschine Interaktion, R - Intuitive Mensch-Roboter Schnittstelle [RO] | ||||||||||||||||||||||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Leitungsbereich | ||||||||||||||||||||||||||||||||||||||||||||
| Hinterlegt von: | Castellini, Dr. Claudio | ||||||||||||||||||||||||||||||||||||||||||||
| Hinterlegt am: | 07 Jan 2026 23:15 | ||||||||||||||||||||||||||||||||||||||||||||
| Letzte Änderung: | 07 Jan 2026 23:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags