Sattler, Felix und Alameddine, Jean-Marco und Bueno Rodriguez, Angel und Stephan, Maurice und Barnes, Sarah (2025) A comprehensive framework toward the seamless integration of muon reconstruction algorithms with machine learning. Journal of Applied Physics, 138 (14). American Institute of Physics (AIP). doi: 10.1063/5.0288348. ISSN 0021-8979.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://dx.doi.org/10.1063/5.0288348
Kurzfassung
Muon-scattering tomography (MST) utilizes naturally occurring cosmic-ray muons to reveal the three-dimensional composition of concealed volumes, such as cargo containers in the maritime domain, reducing the need for artificial radiation sources. The reconstruction methods of current state-of-the-art systems rely on geometry based approaches, such as the Point of Closest Approach (PoCA) algorithm, whose strong heuristics blur fine structures and introduce high frequency noise. Statistical Expectation-Maximization (EM) reconstruction methods can recover these lost details but are traditionally ruled out for real-time application given their high computational and numerical demands. We introduce a comprehensive framework for MST reconstruction in PyTorch, including traditional and fast, but inaccurate geometry-based methods, as well as a highly optimized EM solver within a single, end-to-end differentiable pipeline. Using parallelism and graphics processing unit (GPU) acceleration, our framework overcomes the aforementioned computational obstacles. As a benchmark, the EM solver is tested on several MST scenarios generated with Geant4. Image quality metrics shows its superiority over traditional reconstruction algorithms, while retaining a per-iteration latency of 0.8s at a 1cm voxel resolution on standard GPUs.
| elib-URL des Eintrags: | https://elib.dlr.de/221639/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | A comprehensive framework toward the seamless integration of muon reconstruction algorithms with machine learning | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 13 Oktober 2025 | ||||||||||||||||||||||||
| Erschienen in: | Journal of Applied Physics | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 138 | ||||||||||||||||||||||||
| DOI: | 10.1063/5.0288348 | ||||||||||||||||||||||||
| Verlag: | American Institute of Physics (AIP) | ||||||||||||||||||||||||
| ISSN: | 0021-8979 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Machine learning, Cosmic rays, Optimization algorithms, Computer simulation, EM algorithm, Leptons, Tomography | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||
| Standort: | Bremerhaven | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien | ||||||||||||||||||||||||
| Hinterlegt von: | Sattler, Felix | ||||||||||||||||||||||||
| Hinterlegt am: | 29 Jan 2026 10:50 | ||||||||||||||||||||||||
| Letzte Änderung: | 02 Feb 2026 12:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags