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ABSTRACT

Muon-scattering tomography (MST) utilizes naturally occurring cosmic-ray muons to reveal the three-dimensional composition of
concealed volumes, such as cargo containers in the maritime domain, reducing the need for artificial radiation sources. The reconstruction
methods of current state-of-the-art systems rely on geometry-based approaches, such as the Point of Closest Approach (PoCA) algorithm,
whose strong heuristics blur fine structures and introduce high-frequency noise. Statistical Expectation-Maximization (EM) reconstruction
methods can recover these lost details but are traditionally ruled out for real-time application given their high computational and numerical
demands. We introduce a comprehensive framework for MST reconstruction in PyTorch, including traditional and fast, but inaccurate
geometry-based methods, as well as a highly optimized EM solver within a single, end-to-end differentiable pipeline. Using parallelism and
graphics processing unit (GPU) acceleration, our framework overcomes the aforementioned computational obstacles. As a benchmark, the
EM solver is tested on several MST scenarios generated with Geant4. Image quality metrics shows its superiority over traditional reconstruc-
tion algorithms, while retaining a per-iteration latency of 0.8 s at a 1 cm voxel resolution on standard GPUs.
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I. INTRODUCTION Through the combination of at least two detectors on opposing sides
of an object to be imaged, the incoming as well as outgoing position
and direction of a muon, a so called track, can be recorded. The
observed displacement in position and corresponding angle of
scatter are used to infer the properties of the concealed materials.

Maritime infrastructures form the backbone of modern
society, enabling global trade, transportation, and resource distribu-
tion. However, these infrastructures face increasing threats from
terrorism, crime, and natural disasters. Ensuring their protection

and monitoring is crucial for border control and overall maritime ~ Since muons are naturally occurring particles that pose no threat to
security. Effective maritime situational awareness is essential to organisms, this approach is particularly suitable for monitoring
anticipate and respond to these challenges. Key to this effort is the ~ maritime infrastructures and detecting concealed threats.
integration of automation and intelligent systems to improve situa- Complex scenarios, such as border control, demand robust 3D
tional awareness, providing meaningful information to aid opera- reconstruction techniques that make use of the available statistics
tors in decision-making. generated by recording muon tracks and ideally incorporate strong
Cosmic-ray tomography, first described by Borozdin et al. in priors to aid optimization. For this, several technical challenges
the context of surveillance,' has emerged as a promising technique =~ must be addressed. These include robustness to noise, scalability to
for enhancing this maritime situational awareness. By leveraging nat- large datasets, and the need for high-performance implementations
urally occurring high-energy muons, muon-scattering tomography suitable for real-time applications. The integration of modern
(MST) enables non-invasive and penetrating imaging of structures. algorithmic tools—such as automatic differentiation and graphics
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processing unit (GPU) acceleration—also allows for new optimiza-
tion strategies and learning-based approaches. For example, com-
bining muon tomography with machine-learning techniques can
enable data-driven models that learn from large datasets while ben-
efiting from end-to-end differentiability and hardware acceleration.
This work, therefore, introduces a comprehensive and scalable
framework for 3D muon tomography.
The main contributions of this work are

« Differentiable, GPU-accelerated implementations of 3D recon-
struction methods for MST, including an Expectation-
Maximization (EM) algorithm, geometry-based approaches, and
trainable 3D volumetric filters.

« Integration with modern machine-learning ecosystems, such as
PyTorch,” enabling seamless experimentation and rapid proto-
typing of reconstruction methods.

« Interactive 3D data exploration tools that simplify the under-
standing and visualization of complex 3D reconstructed data.

By addressing these challenges, this work aims to establish a com-
prehensive and scalable framework for cosmic-ray tomography. The
integration of advanced reconstruction techniques with machine learn-
ing will contribute to more effective and robust monitoring solutions.

Il. RELATED WORKS

Two classical and widely used geometry-based algorithms for
MST are the Point of Closest Approach (PoCA)’ and Angle
Statistics Reconstruction (ASR)." PoCA assumes that the most
probable scattering location of a muon lies at the point where the
incoming and outgoing trajectories are closest to each other and
assigns the scattering angle to a single voxel in 3D space. ASR, on
the other hand, uses statistical distributions of scattering angles
across multiple voxels to infer high-density regions. While both
methods are computationally efficient, they do not exploit prior
knowledge about the scanned scene or incorporate statistical
models of the measurement process.

A significant advancement beyond purely geometric
approaches was introduced by Schultz et al,” who proposed an
Expectation-Maximization (EM) algorithm that incorporates mea-
sured scattering statistics (using the displacement and angular
change of the muon track) and allows for the inclusion of prior
information (such as those coming from geometry-based methods)
into the reconstruction process. This marked a shift toward more
probabilistic and model-based reconstruction techniques in MST.
Building on this, Riggi et al.” conducted a comparative study evalu-
ating several reconstruction methods, including a refined EM algo-
rithm, specifically for detecting high-Z materials inside shipping
containers. Their work demonstrated the potential of statistical
methods for enhanced material discrimination. However, the focus
was primarily on high-Z threats (e.g., nuclear materials), while
broader border security applications must also address low-Z mate-
rials, such as powders and liquid substances.

Barnes et al.” explored the application of muon tomography
for detecting a wider range of illicit substances, highlighting its
utility in comprehensive border security settings. Their work
underscored the need for general-purpose and adaptable recon-
struction techniques.
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Recently, machine learning has been applied to MST reconstruc-
tion, showing promising improvements in image quality and recon-
struction speed.”” A differentiable pipeline has also been
demonstrated by Strong et al.'’ to optimize detector setups. These
methods, often based on supervised learning, leverage curated train-
ing datasets to learn complex mappings from muon tracks to material
distributions or sensor configurations. While effective, such
approaches require substantial amounts of labeled data, which may
not always be available or generalizable across different environments.

Consequently, there remains a strong need for reliable, unsu-
pervised 3D reconstruction methods, such as the EM algorithm.
Beyond its standalone utility, a scalable and robust EM implemen-
tation can serve as a valuable prior or initialization strategy when
training more complex AI models. As outlined by Schultz et al.,’
their method is a global optimization technique that utilizes all
available statistics in a scene and, therefore, comes with increased
computational complexity and memory demands. Specifically, the
traditional EM method relates every muon track M with every
voxel N, thus scaling with a memory complexity of ((MN). Even
with a short exposure time and coarse grid resolution, the algo-
rithm becomes prohibitively expensive in terms of memory. Riggi
et al® circumvent this by using a hash map (a data structure that
maps keys to values using a hash function to determine an index
into an array of buckets), storing only a sparse subset of interac-
tions. While reducing the memory complexity, hash maps are hard
to access in parallel,'" therefore strongly limiting the effectiveness
of parallel computations.

We, therefore, propose a novel, sparse implementation of the
EM algorithm that works in a parallel manner on the GPU together
with optimized geometry-based methods. The implementation of the
EM algorithm and the corresponding methods, together with effi-
cient implementations of the traditional PoCA and ASR algorithms,
are combined into a consistent framework for PyTorch that enables
end-to-end learning through automatic differentiation. This allows
for efficient benchmarking of various algorithms for MST in the
context of maritime situational awareness and paves the way for the
development of more complex reconstruction methods.

lll. METHODS

This section describes the methodology for developing the pro-
posed framework for MST. We divide our contributions into three
stages that will be discussed subsequently: Initialization, processing,
and visualization. Each stage leverages modular, high-performance
algorithms designed for interchangeability with existing data processing
workflows, with an emphasis on GPU-accelerated computation. The
reconstruction process itself offers statistical methodologies and filtering
techniques that support automatic differentiation, facilitating seamless
integration with contemporary machine-learning frameworks.

A. Initialization

Utilizing naturally occurring muons leads to sparse and noisy
statistics. Due to the complex scattering processes that muons
undergo inside materials, the reconstruction of the original muon
path is a high-dimensional problem. It is, therefore, crucial to ini-
tialize any optimization algorithm with a well-informed prior to
reduce computational load and help convergence. Especially for the
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EM algorithm, that iteratively optimizes a non-convex likelihood
function without a closed-form solution,” the initial parameter
choice can significantly influence convergence behavior.

After recording enough muon tracks, the reconstruction begins
by discretizing the entire volume of interest (VOI) into a regular
N, X N, X N, voxel grid. Each voxel is initialized with an initial
scattering density estimate that is either based on user-defined values
or the output of a geometry-based reconstruction method. Schultz
et al.” show that the initialization with PoOCA improves convergence.

To allow wusers to benchmark different reconstruction
approaches, we implement two geometry-based methods, PoOCA and
ASR. Both versions are written in PyTorch and can, therefore, make
use of its automatic differentiation engine and GPU acceleration.
These fast implementations enable experimentation with different
initialization of the EM optimization procedure, where PoCA may
serve either as a standalone reconstruction or as an initialization
prior that aids EM convergence. Reconstruction with PoCA can be
solved analytically and in parallel for all muon events: After convert-
ing the muon tracks into 3D PoCA-positions and subsequently into
voxel indices, the per-voxel scattering statistics are reduced into a
single per-voxel scattering value. For that, calculating either the
average, minimum, or maximum scattering value is currently sup-
ported. Saving all values per voxel without reducing them, to allow
for subsequent quantile or median filtering, is also supported, but
only sequentially. For ASR, we extend this implementation by first
computing the angles between the incoming and outgoing muon
tracks. Since ASR works over a neighborhood, defined by a user-
controllable factor (see Stapleton et al*), we first compute a sparse
distance matrix that acts as a mask to include relevant voxels.
Columns correspond to muon events, while rows correspond to
voxels. Next, we compute the total contribution per voxel by multi-
plying the rows of the mask with the scattering angles for all voxels
and collapse the rows using another average reduction. Due to the
inclusion of statistics over a neighborhood, ASR reconstruction
yields a smoother map that mitigates the reconstruction noise. Note
that both PoCA and ASR can also be used as a standalone recon-
struction algorithm within the provided framework.

Both algorithms are implemented via PyTorch, which allows
access to high-performance GPU-accelerated calculations via
CUDA. Furthermore, calculations are performed batch-wise, utiliz-
ing parallelism to efficiently populate millions of voxels.

B. Reconstruction and filtering

After initialization, the populated voxel volume can be
optimized using our novel EM implementation and additionally
post-processed using volumetric filters to reduce noise. A core
component of the original EM algorithm is the computation of a
path response matrix ~ that weighs each voxel in a muon track.
Computing this matrix in a dense way leads to the worst-case
memory complexity of ((MN), as described in Sec. II. To allow
parallelization on the GPU and handle large scenes efficiently, we
implemented the computation of the path response matrix using a
custom C++ back-end, which is accessed from the Python code via
the pybindl1 library."” Implementing the numerically expensive
voxel path tracing in C++ allows for compilation-time optimiza-
tions of the code and trivial multi-threading, severely improving
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the execution speed. In essence, the tracing algorithm is based on
the Hierarchical Digital Differential Analyzer (HDDA) algorithm,14
widely used in computer graphics to traverse volumetric structures.
The implementation supports straight-line muon tracing, connect-
ing muon entry and exit points of the VOI directly, as well as
single scattering (as it is computed with PoCA), where the muon
traverses a piecewise-linear trajectory. Due to the modular structure
of the framework, arbitrary tracing functions may be implemented
in the future, such as splines or more complex primitives'” approx-
imated by piecewise linear rays that are chained together and traced
with the HDAA. The implemented EM algorithm also supports the
addition of muon momentum estimation by assigning a muon
momentum directly to each event to aid convergence.

The estimated, sparse path response matrix is subsequently
used to perform parallel optimization on the GPU in PyTorch, mini-
mizing execution times per iteration and allowing scalability. Since
the EM algorithm requires the constant computation of matrix
inverses, we also employ several techniques proposed in the imple-
mentation by Riggi et al.” to improve numerical stability as well as to
condition the EM for larger problems and regularize outliers.

Additionally, optimized, learnable volumetric filters, such as
Gaussian smoothing, median filtering, or 3D convolution functions,
are integrated into the framework. These functions play a crucial role
in post-processing and regularization, improving the overall quality
of the reconstructed data by reducing noise and enhancing feature
resolution. This filtering approach ensures that the reconstructed
images are both accurate and interpretable, simplifying practical
applications in maritime security and other scientific domains.

C. Visualization

To allow interactive data exploration, we have implemented a
web-based visualization front-end in JavaScript that renders volu-
metric MST reconstructions in real-time, as shown in Fig. 1. The
interface provides fine-grained controls to enhance the inspection
of the reconstructed volume, including voxel grid opacity, point
cloud size, density minimum and maximum thresholds, and color
map selection. These controls enable users to filter, rescale, and
contrast-enhance the 3D scattering density maps in real time. We
further support ground-truth geometries imported via the
Blender-to-Geant4 (B2G4) framework'® or single 3D mesh models,
as they can be overlaid as semi-transparent meshes, enabling
pixel-accurate, side-by-side comparisons between reconstructed
volumes and expected objects. For more advanced methods that
employ supervised data and thus offer a ground-truth, this tool can
offer a better understanding of the reconstructed output and cross-
check the impact of metrics on the visual quality of a reconstruc-
tion. Especially for the application of MST in border security
deployments, these features allow operators to precisely inspect the
results and enhance the detection capabilities of security inspection
operations.

IV. SIMULATION SETUP
A. Dataset creation

In order to evaluate the effectiveness and scalability of our
framework, we have conducted a series of extensive studies on the

¥€:12:01 920z Atenuer G|

J. Appl. Phys. 138, 144904 (2025); doi: 10.1063/5.0288348 138, 144904-3

© Author(s) 2025


https://pubs.aip.org/aip/jap

FIG. 1. Exemplary reconstruction results displayed in the visualization front-end
provided with the framework. Displayed is a simple, simulated scene with recon-
structed points (blue) as well as original 3D meshes (yellow) and bounding
boxes (pink) to aid the understanding of the quality of the reconstruction.

described implementations of PoCA, ASR, and the custom EM
algorithm. A set of synthetic scenes with increasing geometric com-
plexity and diverse material compositions was generated in
Geant4'” under ideal detector conditions. Scene construction fol-
lowed a two-step workflow: (i) individual cubes, nested cubes, and
elongated cubes were arranged using B2G4 and (ii) the resulting
3D polygonal geometries were exported directly into Geant4 for
Monte Carlo particle simulation. Muon tracks were sampled from
the Cosmic-ray Shower Library (CRY)'® with a fixed number of
1.5 x 107 simulated events to ensure fair algorithmic comparison.

ASR-Test

Ir Na Pb SameX0 Ta

Figure 2 illustrates the nine simulation configurations: Six simple
configurations each contain one of the following test materials:
Iridium (Ir), sodium (Na), lead (Pb), tantalum (Ta), yttrium (Y),
and zinc (Zn). These were chosen to give a broad spectrum of
varying material densities to estimate algorithmic performance on
a varying grade of sparsity. To approach more realistic scenarios,
three scenes with additional complexity are used: These scenes
deliberately pair materials of comparable density but contrasting
radiation length (SameXj), nest different densities (ASR-Test) to
challenge the reconstruction methods, and test spatial resolution
(ThreeCubes). The background of all the scenes is set as air. The
world size for all scenes is set to 2 X 2 x 2m?® centered around the
origin, leading to grid sizes between 10* and 400° voxels.

B. Performance metrics and evaluation

We assess reconstruction quality across our implementations
of PoCA, ASR, and EM while evaluating scalability and computa-
tional efficiency of our novel sparse and parallel EM implementa-
tion. Simulated experiments were performed on the nine Geant4
scenes described in Sec. IV A. For quantitative comparison, we
employ three standard image quality metrics: the Peak
Signal-to-Noise Ratio (PSNR), the Structural Similarity Index
Measure (SSIM),"” and the Learned Perceptual Image Patch
Similarity (LPIPS).”” Together, these complementary metrics offer
a quantitative view of reconstruction accuracy, structural integrity,
and perceptual quality. Estimated densities are normalized with
respect to the maximum estimated value to allow comparison with
the ground-truth. For normalized, estimated density per voxel i
and corresponding ground truth i,, the PSNR is computed as

L2
PSNR(II, 12) =10- loglo(m) 5 (1)

with MSE as the mean squared error between estimated reconstruc-
tion i, and ground-truth i,, and L as the maximum possible voxel
value (meaning the highest value in the respective ground-truth).
Note that the PSNR quantifies the voxel-wise error relative to the
ground-truth scattering density map, with higher PSNR values cor-
responding to fewer voxel-wise errors. The SSIM is defined as

(2, + C1) (203, + Cy)

SSIM(iy, i) = ,
o) = (12 +C) (0 + 08+ C)

2

ThreeCubes Y Zn

FIG. 2. Ground-truth of the XZ-projection for the different scenarios, where normalized density is mapped using a color map, representing different materials. For the
ASR-Test, the borders of the two small boxes are made of iron and are filled with water, while the cubes within these boxes are made of tungsten. For SameXj, the object
on the left is made of titanium, while the object on the right is made of lead. For ThreeCubes, the cubes are made of tungsten (bottom-left), iron (middle), and aluminum

(top-right). For all scenarios, the background is air. Best viewed digitally.
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where y; and u, denote the local means of i; and i,, 6% and o2 rep-
resent their local variances (contrast), and o, is the local covari-
ance that captures shared structural information. The stabilizing
constants C; = (k;L)* and C, = (k,L)*, with k; = 0.01 and
k, = 0.03 used here, prevent division by zero when u;, ,, o3, or
o5 are very small. By jointly evaluating the local mean, contrast,
and structure, SSIM offers a perceptually aligned measure of recon-
struction quality that is especially valuable for assessing MST
results beyond simple voxel-wise error metrics. We complement
PSNR and SSIM with LPIPS, which compares deep-network

feature maps instead of raw voxel values, as given by

LPIPS(ir, i2) = we [|byin) — by ()3, 3)
14

with the feature-map (activation tensor) ¢,(-) extracted from layer
£ when the input is forwarded through the network.”’ Note that
these standard neural networks encode rich, hierarchical visual
feature vectors, including edges, textures, and object parts that cor-
relate well with human perception, with lower LPIPS scores indicat-
ing that i, is perceptually closer to i,. Since all the metrics work on
2D instead of 3D data, we slice the 3D volume along the Y axis
according to the given grid resolution and average over the slices.
In addition to evaluating image quality, we conduct a scalabil-
ity study for the EM algorithm to measure execution time, memory
consumption, and voxel count as a function of input size. This
analysis is crucial for ensuring that our approach remains feasible

ASR-Test Ir Na Pb

ASR

PSNR: 22.84
SSIM: 0.86
LPIPS: 0.46

PSNR: 9.13
SSIM: 0.65
LPIPS: 0.66

PSNR: 10.57
SSIM: 0.38
LPIPS: 0.58

PSNR: 9.22
SSIM: 0.65
LPIPS: 0.66

SameX0 Ta

5
o |
[

PSNR: 24.57
SSIM: 0.91
LPIPS: 0.33

for large-scale real-world applications. Furthermore, we conduct a
multi-resolution study to investigate the effect of varying resolu-
tions on convergence behavior. This qualitative evaluation allows
us to assess the trade-offs between the computational cost and
reconstruction accuracy, providing insights into optimal parameter
configurations for various use cases.

V. RESULTS
A. Quantitative comparison

This section presents a comparative analysis of the different
algorithms across all simulated scenes. Figure 3 displays the results
for ASR, EM, and PoCA (from top to bottom), with each column,
from left to right, representing one of the simulated scenes detailed
in Sec. IV A. For each algorithm and scene, the corresponding per-
formance metrics are shown below; the boldface values beneath
each image mark the best score for that scene.

In numerical terms, the EM reconstruction achieves very high
perceptual fidelity across all scenes, attaining the top SSIM score in
eight scenes and the lowest LPIPS score in the same eight scenes,
reaching a minimum of 0.23 in the ThreeCubes scene. Although its
PSNR score is only outright best in the high-Z cases (Ir, Pb, and
Ta), it stays close to PoCA elsewhere, for instance, 22.40-22.83 dB
in the ASR-Test scene and 26.70-27.77dB in the ThreeCubes
scene.

While the standard reconstruction methods achieve good
results, we observe that their perceptual quality does not match

ThreeCubes Y Zn

PSNR: 9.50
SSIM: 0.63
LPIPS: 0.65

PSNR: 9.19
SSIM: 0.65
LPIPS: 0.66

PSNR: 27.50
SSIM: 0.93
LPIPS: 0.29

PSNR: 9.45
SSIM: 0.64
LPIPS: 0.65

PSNR: 22.40
SSIM: 0.90
LPIPS: 0.37

PSNR: 9.19
SSIM: 0.65
LPIPS: 0.58

PSNR: 9.25
SSIM: 0.66
LPIPS: 0.61

PSNR: 9.27
SSIM: 0.66
LPIPS: 0.56

PoCA

PSNR: 22.83
SSIM: 0.89
LPIPS: 0.46

PSNR: 9.15
SSIM: 0.65
LPIPS: 0.64

PSNR: 9.26
SSIM: 0.66
LPIPS: 0.65

PSNR: 9.20
SSIM: 0.65
LPIPS: 0.65

PSNR: 23.61
SSIM: 0.92
LPIPS: 0.30

PSNR: 23.96
SSIM: 0.91
LPIPS: 0.35

PSNR: 9.22
SSIM: 0.66
LPIPS: 0.56

PSNR: 26.70
SSIM: 0.94
LPIPS: 0.23

PSNR: 9.27
SSIM: 0.66
LPIPS: 0.58

PSNR: 9.26
SSIM: 0.66
LPIPS: 0.58

PSNR: 9.13
SSIM: 0.65
LPIPS: 0.66

PSNR: 27.77
SSIM: 0.94
LPIPS: 0.28

PSNR: 9.19
SSIM: 0.65
LPIPS: 0.66

PSNR: 9.17
SSIM: 0.65
LPIPS: 0.66
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FIG. 3. Comparison of the reconstruction results for the different algorithms. The results are arranged row-wise for ASR, EM, and PoCA (from top to bottom) and column-
wise by test scene (from left to right). Each image is accompanied by the corresponding performance metrics below, where boldface values indicate the best-performing
algorithm for each scene. For comparison with the ground-truth, see also Fig. 2. Best viewed digitally.
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TABLE I. Benchmarking results of the EM algorithm, performed with different voxel sizes. The simulation was conducted with ~3.7 x 10° hits, 1000 iterations, and has been

initialized with PoCA.

Voxel size (cm) 20 10 5 2 1 0.5
Voxel count 1x10° 8x10° 64 x 10* 1x10° 8 x 10° 64 x 10°
Weight matrix (MB) 82 182 387 1010 2054 4147
Initialization time (s) 1.2 2.2 4.7 11.1 22.5 44.3
Avg. time per iteration (s) 0.15 0.15 0.19 0.4 0.8 1.6

that of the EM implementation, and their geometric assumptions
are reflected in the metrics. PoCA highlights the edges and,
thanks to this, achieves the highest PSNR scores in high-contrast
settings: 27.77 dB in the ThreeCubes scene and 23.96 dB in the
Same X, scene. However, this enhancement introduces artifacts
that raise its LPIPS score in other scenes compared to EM algo-
rithm results. Furthermore, ASR produces smooth maps that
improve the PSNR score in low-density materials, for instance,
10.57dB in Na and 9.50 dB in Y. However, this smoothing
degrades the structure, as evidenced by the SSIM score dropping
to 0.38 for the Na scene, as well as ASR failing to fully resolve
the ASR-Test scene.

A noticeable effect beyond the metrics that can be derived
from Fig. 3 is that the geometrical assumptions of each algorithm
are visible. The PoCA assumption of a single scattering point intro-
duces high-frequency artifacts. It is unable to fully capture the
shape of the cube, concentrating on areas where the dispersion is
greater. ASR, by contrast, distributes the inferred scattering contin-
uously along the straight muon path, averaging the signal and
yielding a noticeably smoother density map. However, this intro-
duces a characteristic “shadow” visible in all reconstructions. The
EM algorithm employs a likelihood-based statistical model that
iteratively refines voxel densities to maximize the joint probability
of all muon trajectories; this update suppresses counting noise and

ground-truth

0.06

0.08 0.10 0.12

Mean Intensity

FIG. 4. Reconstruction results of the EM algorithm for the ASR-Test scene for different voxel sizes. The first six columns represent the results for the different voxel sizes,
as indicated on the top, while the last column shows the ground-truth. The three rows represent the different projections of the scene, i.e., the XZ-projection, the

XY-projection, and the YZ-projection.
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compensates for path overlap. As a result, EM preserves shape and
contour, resulting in high SSIM scores and low LPIPS scores.
However, the same statistical filtering attenuates local amplitude
variations; hence, its PSNR score is not always the maximum: it
sacrifices some point accuracy to gain structural fidelity. An
example of this can be seen in the SameX, and ASR-Test scenes
where visually POCA seems to deliver a cleaner result. When com-
paring this to the EM, it can be seen that despite higher noise in
the EM, the density is more uniformly distributed without the “hot
center” (the red concentration inside the solid), which, in down-
stream tasks, such as material classification, would lead to errors.
With better initialization or pre-learned priors, these effects can be
mitigated—however, these efforts are beyond the scope of this work
but will be a topic for future studies.

B. Scalability

In this section, we present a scalability study of the imple-
mented EM algorithm, examining its performance with varying
voxel sizes. Table I presents the benchmarking results for the EM
algorithm obtained with varying voxel resolutions, from 20 cm to
5 mm, using 1000 iterations and initialized with the PoCA recon-
struction. We keep the number of muon events constant across all
resolutions. By halving the voxel size, the number of voxels
increases by a factor of eight (cubic law), which means that we look
at scenarios ranging from 1 x 10 voxels up to 64 x 10° voxels. In
parallel, the weight matrix, which stores the geometric information
from the voxel-tracing for every muon event and every voxel, grows
from 82 MB to 4.1 GB. The initialization time, dominated by the
construction of the weight matrix, scales from 1.2 to 44.3 s. The
average time per iteration also increases, but more moderately,
thanks to GPU parallelism: from 0.15 s at 20 cm to 1.6 s at 5 mm.
Overall, the table indicates that 1—2 cm resolutions remain compu-
tationally affordable, with a consumption of ~1 GB of memory
and times per iteration of less than 1s, whereas going down to
5 mm requires several BG of memory and significantly longer time
for initialization. However, such voxel sizes are only required for
use cases where millimeter localization is critical. Nevertheless, the
proposed workflow demonstrates that while the voxel counts
increase exponentially, the time and memory complexity only
increase linearly by a factor of ~2.

C. Effects of voxel resolution

Figure 4 shows the reconstruction results of the EM algorithm
for the ASR-Test scene, but for different voxel sizes varying
between 5 and 200 mm. Note that for all voxel sizes, the number of
iterations remains identical, which allows us to draw conclusions
about the convergence behavior of the algorithm. While the voxel
size of 200 mm represents the extreme case of using a few voxels
with a large muon-per-voxel statistic, the 5 mm case represents
the opposite, ie, a large number of voxels with a small
muon-per-voxel statistic. We do not perform any form of averaging
or neighborhood sampling but reconstruct with the statistics avail-
able. At 200 and 100 mm, the sampling is so coarse that the objects
are reduced to low-frequency spots, and the central cavity of the
cube is barely detectable. At 50 mm, the general contours of the
cubes appear; yet, the walls remain discontinuous. The interior,
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(b)

©

(d)
FIG. 5. Four different reconstructions using the EM implementation of the same
ASR-Test scene used previously in Fig. 4. Columns show the XZ-, XY-, and
YZ-projections, respectively. Two different voxel sizes have been tested, each
with and without pre-processing the PoCA points with a 3D volumetric Gaussian
kernel. Colors indicate normalized density with all four scenes normalized to
their respective maximum value. (@) 5 mm voxel size, PoCA initialized; (b)
5 mm voxel size, PoCA initialized, pre-processed with Gaussian kenrel; (c)

20 mm voxel size, PoCA initialized; and (d) 20 mm voxel size, PoCA initialized,
pre-processed with Gaussian kernel.

albeit hollow, is rather noisy, and the concealed structures are not
entirely resolvable. A voxel resolution of 20 mm is decisive: The
four walls and the inner cubes are clearly distinguishable, although
random grain persists. Moving to a resolution of 10 mm sharpens
the edges, and noise decreases. Further refinement to a 5 mm reso-
lution appears to provide no additional information; instead,
details get lost due to the lack of muon-per-voxel statistics and
additional sparsity. At a resolution of 10 mm, the geometry of the
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cubes becomes reasonably well captured, though noticeable devia-
tions from the ground truth remain visible. Further refinement to
5mm does not yield substantial improvements due to limited
muon-per-voxel statistics. Thus, voxel sizes around 10 mm repre-
sent a practical balance between fidelity and computational effi-
ciency. Millimeter-scale resolutions are only justified when
sub-centimeter localization is explicitly required, in combination
with a statistical count sufficient to maintain an acceptable
signal-to-noise ratio.

Another interesting effect of voxel resolution can be seen in
Fig. 5. Shown are the two previously described reconstructions of
the ASR-Test scene performed with our EM implementation at 5
and 20 mm resolution. The volume is initialized with PoCA points
for faster convergence. In addition, a 3 x 3 x 3 Gaussian filter
kernel is applied during initialization for both scenes, effectively
distributing the PoCA values over a neighborhood. It is visible that
at a resolution of 5 mm, sparsity of the initial PoOCA points is
reduced as values are distributed over a neighborhood by the appli-
cation of the filter, leading to a qualitatively better and more
refined reconstruction. Moving to 20 mm resolution, it becomes
clear that the same filtering biases the initialization and the recon-
struction becomes overly blurred. This ties in with the previous
observations that a meaningful reconstruction is closely related to
the initial distribution and that a balance between sparsity and vari-
ance per voxel is important.

VI. CONCLUSION AND FUTURE WORK

This study introduces an end-to-end reconstruction frame-
work for muon-scattering tomography (MST), including a highly
optimized EM solver, which provides geometric accuracy, percep-
tual quality, and reasonable requirements for computational
resources. It builds a critical foundation for practical, near real-
time MST in maritime and border security applications. We have
demonstrated that it is possible to achieve both high geometric
fidelity and operational efficiency within realistic hardware con-
straints. This aligns closely with the increasing demand for auto-
mated, scalable, and accurate monitoring systems as outlined
earlier.

Our implementation of the EM algorithm features a custom
back-end for fast muon-path tracing within the VOIL. In maritime
environments, where large and often complex structures need to be
continuously monitored, the ability to perform high-resolution 3D
reconstruction in near real-time is crucial. The modularity of our
PyTorch-based framework supports seamless integration with existing
data acquisition and simulation pipelines, including B2G4 and
Geant4. Standard reconstruction methods, such as PoCA, ASR, and
EM, can be freely interchanged and incorporated. As all implemented
algorithms support automatic differentiation and GPU acceleration,
the combination of our framework with novel machine-learning
pipelines is made possible.

A set of test scenes with varying levels of complexity and
materials has been created in B2G4 and simulated using Geant4.
The EM implementation has been benchmarked against PoCA
and ASR: Our implementation of EM reduces per-iteration
latency to 0.8 s for a voxel size of 1 cm while keeping memory
footprints within 1 GB. Even at 5 mm resolution, it stays below
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1.6 s per iteration with a memory consumption lower than 5 GB.
Furthermore, the integrated EM solver maintains superior per-
ceptual fidelity compared to PoCA and ASR reconstructions, as
shown by comparing the results using PSNR, SSIM, and LPIPS
scores as metrics.

Future work will focus on developing better priors to incor-
porate pre-learned, non-linear information to improve the initial-
ization of the algorithm. By using PyTorch and its automatic
differentiation engine to implement the algorithm, we can replace
the formulation of expectation-maximization with other optimi-
zation procedures. Furthermore, our implementation can be used
in end-to-end learning pipelines where the EM can be used as an
intermediate step between input data and downstream tasks, such
as material classification, without breaking the automatic differ-
entiation graph. This enables complex learning tasks through the
EM implementation. To allow for even more complex scenes with
larger voxel counts, adaptive resolution using hierarchical spatial
data structures can be explored. This will simultaneously improve
execution time too. Scalability and robustness require leveraging
synthetic data pipelines (e.g., B2G4) that mimic real acquisition
conditions to enable large-scale, noise-aware reconstruction
studies and the development of methods that isolate relevant
signals from background contributions. In a next step, real-world
experiments must be conducted to evaluate noise behavior,
robustness to detector alignment, and environmental uncertainty.
To generate a better understanding of the generalization of our
framework, we participate in an ongoing research effort focusing
on monitoring nuclear materials. We hope that the public release
of our code will also motivate further generalization in the aca-
demic community.

In conclusion, this work establishes a practical and extensible
baseline for near real-time MST, paving the way for intelligent
security systems in maritime and border environments.
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For a better understanding, we provide our results and ground-truth combined into a single high-resolution graphic in Fig. 6.
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FIG. 6. Joined ground-truth and comparison of recon-
struction results for the different algorittms. The results
are arranged row-wise for Ground-truth, ASR, EM, and
PoCA (from top to bottom) and column-wise by a test
scene (from left to right). Each image is accompanied by
the corresponding performance metrics below, where
boldface values indicate the best-performing algorithm for
each scene. See also Fig. 3.
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