Polushko, Vladyslav und Bucher, Tilman und Hatic, Damian und Rösch, Ronald und März, Thomas und Rauhut, Markus und Weinmann, Andreas (2025) NeuenahrFlood Dataset and an Improved Human-in-the-Loop Strategy for Efficient Flood Water Segmentation. In: 16th Earth Resources and Environmental Remote Sensing/GIS Applications, 13671. Environmental Remote Sensing, 2025-09-15 - 2025-09-18, Madrid, Spain. doi: 10.1117/12.3069564. ISBN 978-151069281-7. ISSN 0277-786X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Effective disaster response during floods requires quick identification of flooded areas. The typical data source for identification is aerial Remote Sensing (RS) imagery, often inexpensive RGB drone images. Reliable flood water detection in RGB images is thus essential. However, detecting water in RGB flood imagery remains challenging, because water, mud, and soil appear similar. Moreover, the sheer volume of data makes manual analysis impractical. To automate water detection, Computer Vision (CV) and Deep Learning (DL) techniques are employed. To train DL methods labeled data are required. We introduce an improved human-in-the-loop strategy which creates labeled data consisting of pairs of RGB image and water mask from aerial RGB and Near-Infrared (NIR) imagery of the 2021 Bad Neuenahr flood. For our labeling strategy, we integrate the NIR data via a false-color representation. We then apply the Segment Anything Model 2.1 (SAM 2.1) on these false-color NIR representations. Because flooded regions have complex shapes, the initial results require manual refinement. By leveraging sparse prompts to identify water, these adjustments are less time-consuming compared to traditional methods. In this way, we improve upon a previous strategy proposed by the authors based on Ilastik. The final labeled RGB dataset serves to train DL models to detect flood water regions in RGB images without additional NIR information. As a result of the proposed labeling strategy, to foster further flood detection research, we provide NeuenahrFlood, an RGB labeled dataset for the task of water segmentation in RGB images. NeuenahrFlood matches typical acquisition parameters during a river flooding event and adds to existing data resources with varied flood and vegetation patterns. We evaluate the benefit of the proposed labeling strategy by training state-of-the-art models on NeuenahrFlood and provide a baseline for further research, confirming the enhanced automated flood detection capabilities.
| elib-URL des Eintrags: | https://elib.dlr.de/221575/ | ||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
| Titel: | NeuenahrFlood Dataset and an Improved Human-in-the-Loop Strategy for Efficient Flood Water Segmentation | ||||||||||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||||||||||||||
| Erschienen in: | 16th Earth Resources and Environmental Remote Sensing/GIS Applications | ||||||||||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
| Band: | 13671 | ||||||||||||||||||||||||||||||||
| DOI: | 10.1117/12.3069564 | ||||||||||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||||||||||
| Name der Reihe: | Proceedings of SPIE | ||||||||||||||||||||||||||||||||
| ISSN: | 0277-786X | ||||||||||||||||||||||||||||||||
| ISBN: | 978-151069281-7 | ||||||||||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
| Stichwörter: | Remote Sensing, Deep Learning, Water Detection, Human-in-the-loop Annotation, River Flood Segmentation Dataset | ||||||||||||||||||||||||||||||||
| Veranstaltungstitel: | Environmental Remote Sensing | ||||||||||||||||||||||||||||||||
| Veranstaltungsort: | Madrid, Spain | ||||||||||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
| Veranstaltungsbeginn: | 15 September 2025 | ||||||||||||||||||||||||||||||||
| Veranstaltungsende: | 18 September 2025 | ||||||||||||||||||||||||||||||||
| Veranstalter : | SPIE | ||||||||||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - OPTSAL | ||||||||||||||||||||||||||||||||
| Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Weltraumforschung Institut für Optische Sensorsysteme > Echtzeit-Datenprozessierung | ||||||||||||||||||||||||||||||||
| Hinterlegt von: | Bucher, Tilman | ||||||||||||||||||||||||||||||||
| Hinterlegt am: | 19 Jan 2026 13:58 | ||||||||||||||||||||||||||||||||
| Letzte Änderung: | 19 Jan 2026 13:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags