elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

DrawIt: Sketch-Based Robotic Task Programming Framework

Angsuratanawech, Promwat (2025) DrawIt: Sketch-Based Robotic Task Programming Framework. Masterarbeit, Technische Universität München.

[img] PDF - Nur DLR-intern zugänglich
35MB

Kurzfassung

Robotic programming traditionally requires specialized knowledge and advanced technical skills, which creates significant barriers for non-expert users who want to utilize robotic technologies effectively. Several implementations have already been introduced to address these issues, for example, by leveraging reusable blocks of code. This approach allows users to drag and drop these blocks using a well-designed user interface. However, a more intuitive way for people to engage with robotics is through writing and drawing. This thesis introduces DrawIt, a sketch-based robotic task programming framework that simplifies the robot programming by enabling more natural and intuitive human-computer interaction. Users show their intention for the robot by drawing freehand sketches directly onto a 3D visualization of its working environment, eliminating the need for conventional coding or specialized technical interfaces. DrawIt uses advanced techniques to accurately segment users’ sketches into symbolic and textual elements, utilizing Vision-Language Model (VLM) and Large-Language Model ( LLM ) for interpretation. These models allow the system to reliably interpret diverse user inputs, translating human nature which is ambiguous and inconsistent human sketches into understandable and actionable commands. The framework extracts necessary details, such as skills, parameters, and objects. Using these to convert to structured task sequences that robots can execute directly.

elib-URL des Eintrags:https://elib.dlr.de/221326/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:DrawIt: Sketch-Based Robotic Task Programming Framework
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Angsuratanawech, PromwatPromwat.Angsuratanawech (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorEiband, ThomasThomas.Eiband (at) dlr.dehttps://orcid.org/0000-0002-1074-9504
Thesis advisorLay, Florian SamuelFlorian.Lay (at) dlr.deNICHT SPEZIFIZIERT
Datum:1 August 2025
Open Access:Nein
Seitenanzahl:103
Status:veröffentlicht
Stichwörter:Sketch, Learning from Demonstration, Robotics
Institution:Technische Universität München
Abteilung:School of Computation, Information and Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt ASPIRO
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Lay, Florian Samuel
Hinterlegt am:14 Jan 2026 09:35
Letzte Änderung:14 Jan 2026 09:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.