elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Earth-like planet Predictor: A Machine Learning Approach

Davoult, Jeanne Pascale und Alibert, Yann und Eltschinger, Romain (2025) Earth-like planet Predictor: A Machine Learning Approach. Astronomy & Astrophysics, 696. EDP Sciences. doi: 10.1051/0004-6361/202452434. ISSN 0004-6361.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
633kB

Offizielle URL: https://www.aanda.org/articles/aa/full_html/2025/04/aa52434-24/aa52434-24.html

Kurzfassung

Context. Searching for planets analogous to Earth in terms of mass and equilibrium temperature is currently the first step in the quest for habitable conditions outside our Solar System and, ultimately, the search for life in the universe. Future missions such as PLAnetary Transits and Oscillations of stars or Large Interferometer For Exoplanets will begin to detect and characterise these small, cold planets, dedicating significant observation time to them. Aims. The aim of this work is to predict which stars are most likely to host an Earth-like planet (ELP) to avoid blind searches, minimises detection times, and thus maximises the number of detections. Methods. Using a previous study on correlations between the presence of an ELP and the properties of its system, we trained a Random Forest to recognise and classify systems as ‘hosting an ELP’ or ‘not hosting an ELP’. The Random Forest was trained and tested on populations of synthetic planetary systems derived from the Bern model, and then applied to real observed systems. Results. The tests conducted on the machine learning (ML) model yield precision scores of up to 0.99, indicating that 99% of the systems identified by the model as having ELPs possess at least one. Among the few real observed systems that have been tested, eight have been selected as having a high probability of hosting an ELP, and a quick study of the stability of these systems confirms that the presence of an Earth-like planet within them would leave them stable. Conclusions. The excellent results obtained from the tests conducted on the ML model demonstrate its ability to recognise the typical architectures of systems with or without ELPs within populations derived from the Bern model. If we assume that the Bern model adequately describes the architecture of real systems, then such a tool can prove indispensable in the search for Earth-like planets. A similar approach could be applied to other planetary system formation models to validate those predictions.

elib-URL des Eintrags:https://elib.dlr.de/221322/
Dokumentart:Zeitschriftenbeitrag
Titel:Earth-like planet Predictor: A Machine Learning Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Davoult, Jeanne Pascalejeanne.davoult (at) dlr.dehttps://orcid.org/0000-0002-6177-2085201683288
Alibert, YannUniversity of Bern, SwitzerlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Eltschinger, RomainUniversity of Bern, SwitzerlandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2025
Erschienen in:Astronomy & Astrophysics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:696
DOI:10.1051/0004-6361/202452434
Verlag:EDP Sciences
ISSN:0004-6361
Status:veröffentlicht
Stichwörter:methods: data analysis / methods: statistical / planets and satellites: detection / planets and satellites: general / planets and satellites: terrestrial planets
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt PLATO - PMC und Science
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Extrasolare Planeten und Atmosphären
Hinterlegt von: Davoult, Jeanne Pascale
Hinterlegt am:07 Jan 2026 15:30
Letzte Änderung:07 Jan 2026 15:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.