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ABSTRACT

Context. Searching for planets analogous to Earth in terms of mass and equilibrium temperature is currently the first step in the quest
for habitable conditions outside our Solar System and, ultimately, the search for life in the universe. Future missions such as PLAnetary
Transits and Oscillations of stars or Large Interferometer For Exoplanets will begin to detect and characterise these small, cold planets,
dedicating significant observation time to them.

Aims. The aim of this work is to predict which stars are most likely to host an Earth-like planet (ELP) to avoid blind searches,
minimises detection times, and thus maximises the number of detections.

Methods. Using a previous study on correlations between the presence of an ELP and the properties of its system, we trained a Random
Forest to recognise and classify systems as ‘hosting an ELP’ or ‘not hosting an ELP’. The Random Forest was trained and tested on
populations of synthetic planetary systems derived from the Bern model, and then applied to real observed systems.

Results. The tests conducted on the machine learning (ML) model yield precision scores of up to 0.99, indicating that 99% of the
systems identified by the model as having ELPs possess at least one. Among the few real observed systems that have been tested, eight
have been selected as having a high probability of hosting an ELP, and a quick study of the stability of these systems confirms that the
presence of an Earth-like planet within them would leave them stable.

Conclusions. The excellent results obtained from the tests conducted on the ML model demonstrate its ability to recognise the typical
architectures of systems with or without ELPs within populations derived from the Bern model. If we assume that the Bern model
adequately describes the architecture of real systems, then such a tool can prove indispensable in the search for Earth-like planets. A

similar approach could be applied to other planetary system formation models to validate those predictions.

Key words. methods: data analysis — methods: statistical — planets and satellites: detection — planets and satellites: general —

planets and satellites: terrestrial planets

1. Introduction

Detecting planets as small and cold as Earth is a major techni-
cal challenge in exoplanet research for the coming decades. The
upcoming PLAnetary Transits and Oscillations of stars mission
(PLATO; Rauer et al. 2014) and the concept of mission Large
Interferometer For Exoplanets (LIFE; Kammerer & Quanz 2018;
Quanz et al. 2022) will be dedicated to this task, but their long
periods (potentially 1 year or more) consume significant obser-
vation time. Although various studies on planet demographics
suggest that small terrestrial planets with short periods are very
common around main sequence stars (e.g. Mayor et al. 2011;
Tuomi et al. 2019; Kunimoto & Matthews 2020), the abundance
of terrestrial planets with longer periods in the habitable zone
of their star is more uncertain (e.g. Hsu et al. 2019; Bryson
et al. 2021). Understanding and anticipating where Earth-like
planets (ELPs in the rest of the paper) form first, and thus target-
ing observations to avoid blind searches, minimizes the average
observation time for detecting an ELP and maximizes the num-
ber of detections. Studies conducted on the architecture and
correlations in multi-planet systems over the years (e.g. Lissauer
et al. 2011; Millholland et al. 2017; Weiss et al. 2018; Gilbert
& Fabrycky 2020; Mishra et al. 2023; Emsenhuber et al. 2023;
Davoult et al. 2024 among others) have highlighted correlations
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between the properties of planets in the same system. For exam-
ple, correlations have been discovered between the presence of
an inner terrestrial planet and the presence of an outer giant
planet (e.g. Zhu & Wu 2018; Zhu 2024; Bryan & Lee 2024), but
it exists an anti-correlation between the presence of a hot Jupiter
and the ‘peas-in-a-pod’ formation (Weiss et al. 2018; Latham
et al. 2011; Steffen et al. 2012). Thus, the architecture of sys-
tems, representing the arrangement of planets in a system, is not
the result of chance but of simultaneous formation within the
same system. In other words, the planets in the same system bear
the imprint of each other’s formation. Therefore, detected planets
could provide insights into undetected planets within the same
system.

Attempts to predict yet-undetected exoplanets based on
detected exoplanets’ properties have emerged in recent years. For
example, Bovaird & Lineweaver (2013), Bovaird et al. (2015),
Lara et al. (2020) and Mousavi-Sadr et al. (2021) have attempted
to use a logarithmic relationship between planetary periods, akin
to the Titius-Bode law, to predict missing planets within sys-
tems. Similarly, Dietrich & Apai (2020) and Sandford et al.
(2021) utilised statistical data from already-detected planetary
populations to forecast future observations. However, all these
previous studies relied on data from observed exoplanet popula-
tions. Here, we propose using synthetic planetary systems from
the Bern model — systems in which all planets are known —
avoiding observational bias.
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In a previous study (Davoult et al. (2024), D24 in the rest of
the paper), we have established correlations between the pres-
ence of an ELP in the temperate zone of its star and other
properties of its system, including the architecture of the plan-
etary system as described in the paper, and the mass, radius,
and period of the innermost detectable planet (IDP in the rest
of the paper) of that system. In this study, we present the results
of algorithms using a machine learning (ML) model capable of
learning the differences in properties between systems hosting an
ELP and those not hosting an ELP, in order to predict whether a
given system hosts an ELP or not.

The use of ML models requires very large datasets, which
makes it impossible to use only data from observed systems. In
addition to the small number of known planetary systems to date
(just under 5000 in July 2024), there is the problem of partial
knowledge of these systems. ELPs, being small and relatively
cold planets, are difficult to detect using the most efficient detec-
tion methods (i.e., transits and radial velocities). Indeed, only 24
systems with at least one ELP are known (following the defi-
nition of Sect. 2.2), representing 0.5% of all systems observed
to date. Herefore, using those data in a ML-based approach is
impossible.

To address these two major problems, this study utilises
populations of several thousand synthetic planetary systems gen-
erated from the Bern model. Studies have examined the outputs
of this model and compared them to observed systems (e.g.
Mulders et al. 2019; Schlecker et al. 2021a; Burn et al. 2021;
Mishra et al. 2021, 2023; Davoult et al. 2024; Emsenhuber
et al. 2025), revealing that these synthetic systems possess sim-
ilar system-level characteristics as observed systems — such as
similar architectures (Mishra et al. 2023; Davoult et al. 2024),
recurring patterns in Peas-in-a-Pod (Mishra et al. 2021), corre-
lations between outer giants and inner earths (Schlecker et al.
2021a), etc. These comparisons lead us to believe that synthetic
systems generated from the Bern model serve as reasonable
training data for ML models. Additionally, a study (Schlecker
et al. 2021b) using a data-driven approach was also successfully
conducted with the synthetic planetary system populations from
the Bern model, aiming to predict the types of planets in a sys-
tem based on the initial conditions of the protoplanetary disk and
planetary embryos.

Section 2 briefly describes the Bern model and the popula-
tions used. Section 3 outlines the various ML models, observa-
tional biases, and system features used. In Section 4, we describe
the results obtained for the different models, and we discuss and
conclude in Section 5.

2. Synthetic population of planetary systems
2.1. The Bern model and synthetic populations

The planetary system formation and evolution model used in this
study is the Generation III of the Bern model, described in detail
in Emsenhuber et al. (2021a). This global model utilises the pop-
ulation synthesis method, as explained in detail in Mordasini
(2018), and is based on the core accretion paradigm (Pollack
et al. 1996). The planetary formation is modelled over 20 Myr,
during which 20 planetary embryos embedded in a disk of gas
and planetesimals accrete material to form planets, migrate, and
dynamically interact, leading to ejections, giant impacts, or reso-
nance traps. At the end of this formation phase, the model tracks
the planets’ thermodynamical evolution (consisting mainly of
cooling and contraction) for 10 Gyr. During this evolution phase,
atmospheric escape and tidal migration are also monitored. For
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more details on the parameterisation of the protoplanetary disk
and the various physical processes involved in the formation and
evolution of planets, refer to Emsenhuber et al. (2021a,b).

In a population synthesis, some parameters are fixed while
others vary. In the populations of planetary systems used in
this study, the fixed general parameters of the systems include
the mass of the central star (1, 0.5, or 0.2 M), the number of
planetary embryos (20), the gas viscosity (@ = 2 x107%), the
distribution of gas and planetesimals in the protoplanetary disk
(Veras & Armitage 2004), the size of the planetesimals (radius =
300 m), and their density (rocky 3.2 g cm™, icy 1g cm™3).
The rest of the initial conditions are randomly drawn according
to a probability distribution constrained by observations, which
allows for diversity in the resulting synthetic planetary systems.
The variable parameters include the initial mass of the gas disk,
M, (Beckwith & Sargent 1996), the external photo-evaporation
rate Mg (Haisch et al. 2001), the dust-to-gas ratio, fp,g=Ms/M,
(where M, is the mass of the solid disk) (Murray et al. 2001;
Santos et al. 2003), the inner edge of the gas disc, Rj,, and the
initial location of the embryos.

The three populations of synthetic systems used in this study
differ only in the mass of the central star. This single difference
directly influences the mass of the protoplanetary disk and thus
the amount of material available for planet formation. As a result,
the three populations exhibit different occurrences and proper-
ties for the same type of planet, highlighting the importance of
studying various types of stars.

The three populations used are:

— G-pop: 24 365 systems around solar mass stars

— earlyM-pop: 14 559 systems around 0.5 solar mass stars

— lateM-pop: 14 958 systems around 0.2 solar mass stars.
For a detailed analysis of the different types of planets and their
occurrences in the above populations, refer to D24.

2.2. Earth-like Planet

This study aims to predict which systems host an Earth-like
planet or not. The ELP category refers to a small terrestrial planet
with a mass ranging from 0.5 to 3 Mg, orbiting the temperate
zone of its star. The mass range was chosen in accordance with
the work of Kopparapu et al. (2018) and Burn et al. (2021). The
temperate zone, defined in Davoult et al. (2024), is defined much
broader as the habitable zone and extends in terms of equilib-
rium temperature (7eq) from 160 to 510 K, calculated as follows:
TeglK] = 279 - a[AUT™'? - Ly [Lo]'*, (1)
where a is the semi-major axis of the planet and L, is the lumi-
nosity of the star. This correspond to a zone between 0.39 and
3.9 AU around a G-type star, between 0.25 and 2.52 around a
early-M type star and between 0.15 and 1.48 around a late-M
type star. By extending the target zone, we increase the number
of systems with an ELP, and we reduce the imbalance in terms
of proportion in the data, which is beneficial for ML models.

As seen in D24, the occurrence of a certain type of planet
varies depending on the type of star it orbits. Thus, in our three
populations, we find 60% of systems with an ELP around solar-
mass stars, 74% around stars of 0.5 M, and 40% around stars of
0.2 Mo,

2.3. Correlations between ELP and the properties of their
systems

In D24, we investigate correlations between planets in the
synthetic planetary systems from the Bern model and their
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architecture to define a typical profile of a system hosting an ELP.
Our conclusions highlight a correlation between the presence
of an ELP, the architecture of its system, and the properties of
the innermost detectable planet (IDP). Indeed, Earth-like planets
tend to form in systems mainly composed of low-mass plan-
ets M < 20 Mg). In systems with more massive planets, the
properties of the IDP, such as mass, radius, and period, can
be indicators of ELP presence. A small, low-mass IDP sug-
gests in-situ formation in a low-mass disk, while a giant IDP
suggest a massive disk and/or planetary migration, unfavor-
able for a stable Earth-like planet in the habitable zone. The
IDP’s period indicates the positions of other planets: a close-
in IDP suggests inward planet grouping, leaving the HZ empty,
while slightly longer periods (>tens of days) indicate outward
grouping, increasing HZ planet probability. Thus, ELP presence
correlates with the system’s architecture, and IDP’s mass, radius,
and period.

Table 7 of D24 summarises the conditional probabilities of
ELP’s presence in systems according to the mass of the central
star, the observed system architecture, and the properties of the
IDP, providing an overview of the combinations most favourable
for ELP formation in a system. The present paper uses part of
their results to develop a predictor incorporating a ML model
that the community can use to predict whether a system is likely
to host an ELP or not based on its observable properties. We
relied on the work presented in D24 to define the observable
properties used in this prediction.

3. Method
3.1. Machine learning classifier (MLC)

In ML methodologies, algorithms typically perform two main
tasks: classification and regression. This problem is a case of
classification, aiming to classify a system into the categories of
‘hosts an ELP’ or ‘does not host an ELP’. ML models are trained
to recognise data falling into one category or another using a
dataset of thousands of data points. Once trained, they can pre-
dict, on an independent dataset, which class an instance falls
into.

There are many classifier tools available, with the most com-
mon being decision trees, support vector machines (SVMs), or
Random Forests, among others. Random Forests fall into the cat-
egory of ‘ensemble’ learning methods. They consist of multiple
sub-classifiers, with each ‘local’ classifier trained on a subset of
data (which is not the entire training set). Then, all local clas-
sifiers are queried to classify an element. The ‘global’ classifier
(which includes all local classifiers) decides based on the major-
ity of vote: if a majority of local classifiers vote to classify an
element into the ‘True’ category, then the final response of the
global classifier is ‘“True’. In this case, the category ‘hosts an
ELP’ is True, and the category ‘does not host an ELP’ is False.

We aim to predict whether a system hosts an ELP or not
to target observations to avoid wasting observation time. There-
fore, we want to ensure that the positive responses given by our
algorithm can be trusted, meaning it produces very few ‘false
positives’. To ensure this, we want to maximise the precision
score (PS), which measures the ratio of ‘true positives’ to all ele-
ments labelled as ‘positive’ (true positives and false positives).
The precision score is the ability of the classifier not to label a
negative sample as positive:

True Positive
PS

(@)

" True Positive + False Positive
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When the precision score increases, the recall score (RC)
decreases. The recall score is the ability of the classifier to find
all the positive samples and is computed as follows:

True Positive
RC

3

~ True Positive + False Negative

In other words, the more we focus on elements most likely to be
labelled ‘True’, the more we miss true positives in the batch. This
is not necessarily a major issue because we do not particularly
want to maximise the RC. The False Negative rate is charac-
terised by the RC. The lower the RC, the higher the number of
false negatives. Given the time required to detect an Earth-like
planet, we chose to focus on maximising the PS rather than the
RC. It seems more important to ensure the method’s reliabil-
ity by concentrating on the most robust systems. Indeed, there
exist many potential targets for a limiting telescope time. In the
opposite situation (plenty of telescope time, but few targets), we
would like to optimise the recall score (minimising the number
of false negatives). The issue arises when the classifier fails to
find any positives in our efforts to maximize true positives.

The significant advantage of ensemble algorithms is adjust-
ing the voting threshold ourselves. Instead of declaring the
threshold at 50% of local classifiers as the threshold for the
global classifier to decide, we can adjust this threshold. In the
rest of the study, we examine several thresholds: 70, 80, and 90%.
We define ‘voting rate’ as the proportion of local classifiers that
have classified an instance as True.

The Random Forest used in this study is made up of 500
decision trees, allowing to reduce the variance through ensem-
ble learning, while keeping the training time reasonable. Each
Decision Tree is trained on a minimum sample of 100 instances
in order to increase the diversity between the trees, while allow-
ing the generalisation of the classification. Trees trained on fewer
instances have a tendency to learn details and overfit. Finally, the
maximum depth of each Tree is limited to five in order to limit
the complexity of the model, forcing it to capture only the most
important relationships in the data. Tests conducted with a higher
maximum depth (no limitation) did not change the results very
much, proving the stability of the results.

3.2. Observational bias

To use the observable properties of synthetic planetary systems
from the Bern model, we apply an observational bias to retain
only the planets that could be theoretically observed. This bias
involves a radial velocity (RV) semi-amplitude threshold on the
star. Planets with an RV semi-amplitude above this threshold
are considered detected, while those below are considered unde-
tected. The detected planets form the new planetary system from
which we extract the characteristics used by the ML model. The
RV semi-amplitude that a planet induces on its star is calculated
as follows:

Kry[ms™'] = 0.6395 - P[days]' - M,[Mg] - My, [Mc]*?,  (4)
where P is the period of the planet, M, its mass and M, the mass
of the star.

The detection threshold is set to exclude ELPs from this
study. Ignoring systems with detected ELPs is reasonable, given
that only 24 systems (0.5%) among nearly 4900 observed (as
of July 2024) are known to host a planet following our definition
(see Sect. 2.2). The RV threshold for detectability varies between
populations due to two factors: the limits of the temperate zone

A94, page 3 of 11



Davoult, J., et al.:

4
2 A . . 1 1
0 .* i
" , , : :
Z 4
el 2_ - - -
@ IO ] ]
@© : : : :
g 4
Y— 24 . 1 1
(@] ol . 1 . * o~
(@)]
K — ' ' '
2 A . 1 o 1
N ] ] ]
-2 0 2 =2 6_ 2 -2 0 .22 0
Log of semi-major axis (AU)

A&A, 696, A%4 (2025)

4
2 . i i .‘ i
0 ot ® 1o i . 0y
" ; , :
Z 4
~ 2 ': - .'.' i v i
9’ 04** ' i |o%ee | 'lf .
© : : : :
E 4
Y 2 A - < i .0‘ .
O |l s .
@ T
9 .
2_ .l. - - Ll - o .
0- J ':.' i -t | %
-2 0 2 -2 0 oo2=2 0 22 0
Log of semi-major axis (AU)

Fig. 1. Representation of 16 systems with ELP (left) and 16 systems without ELP (right) in a semi-major axis — planetary mass diagram (in log
scale for both axes). Blue dots represent ‘detectable’ planets and yellow dots ‘undetectable’ planets.

Table 1. RV semi-amplitude thresholds retained for each population.

Central star’s mass  Threshold retained
1 M (G-pop) 0.43 ms™!
0.5 M, (earlyM-pop) 0.76 ms™!
0.2 M, (lateM-pop) 1.55 ms™!

vary depending the population (T oc LY#) and for a given plan-
etary mass and period, the RV semi-amplitude signal varies as
M;?3. The values used are presented in Table 1.

Although this observation bias is too simple to be considered
accurate, D24 have shown that it can reproduce the proportions
in architectures observed in multiplanet systems, which is suffi-
cient for this study. An analysis of the impact of this bias on the
synthetic populations of planetary systems used here is available
in D24,

3.3. Features of interest

When using a ML model, it projects the dataset into an
N-dimensional space, where N is the number of dimensions of
the dataset. In our case, N represents the amount of informa-
tion about each system provided to the algorithm for learning.
Each of the three populations contains between ~15 000 and
~25000 systems. After removing empty systems (systems with
no planets) and systems with no visible planets (systems with
planets but that cannot be classified in our architecture classes),
only about 5000 to 20 000 instances remain in each population.
While the size of this dataset allows us to conduct this study,
it remains limited. If N is too large, the data may become lost
in a high-dimensional space, making the task challenging for
the model and increasing the risk of overfitting. Therefore, it is
important to describe each instance — each system in this case —
with a reasonable number of features to mitigate the risk of over-
fitting. The challenge lies in selecting the right features, the most
useful ones that provide the most information. Given that the aim
of this project is observational, the information provided to the
ML model must be easily observable quantities. We present two
strategies: the first strategy utilises the findings of D24, while the
second strategy involves defining the features based on a manual
analysis.
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3.3.1. Observables derived from D24

In D24 we present a study of correlations between the presence
of an ELP in a system and observable quantities of those systems.
The conclusions link the presence of an ELP with a system’s
‘biased’ architecture, as well as the mass, radius, and period of
the innermost detectable planet (IDP). The biased architecture
of a system refers to the architecture of a system considering
only the detectable planets in that system. The method used to
calculate the observational bias is the same in this article as in
D24, ensuring a similar approach.

In D24, we also introduce a method for classifying each sys-
tem into a different architecture class using Principal Component
Analysis (PCA) applied in the mass — semi-major axis plane of
the visible planets in the system, along with the mass of the most
massive visible planet in the system and the number of visible
planets. Thus we define five classes:

Low-mass: systems with at least two visible planets in which
all planets are less massive than 20 My

Anti-Ordered: systems with at least two visible planets, with
at least one planet more massive than 20 Mg and a gen-
eral tendency for the planetary masses to decrease with the
distance to star increasing.

Ordered: systems with at least two visible planets, with at
least one planet more massive than 20 Mg and a general ten-
dency for the planetary masses to increase with the distance
to the star increasing.

Mixed: systems with at least two visible planet and a planet
more massive than 20 Mg, and a large variability in the
planetary masses, inducing no special tendency.

n = 1: systems with only one visible planet

These four descriptive features make up the first set: the archi-
tecture of the visible system, and the IDP’s mass, radius, and
period.

3.3.2. Manual feature selection

Looking at the systems generated from the Bern model, it is
evident that systems with ELPs are very similar to each other,
whereas, conversely, they are very different from systems with-
out ELPs. Figure 1 depicts two types of systems: on the left are
sixteen systems with at least one ELP randomly selected from
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the Sun-like stars population, and on the right are sixteen sys-
tems without ELPs randomly selected from the same population.
The blue dots represent planets that have passed the detection
threshold, while the yellow dots represent ‘non-detectable’ plan-
ets. Systems without ELPs (left) are all very similar to each
other. They consist mostly of small planets, with relatively few
detectable planets, and few planets more massive than Neptune.
Additionally, compact, clustered systems are observed around
one AU. In contrast, systems without ELPs, on the right, dis-
play more detectable planets, including more massive planets. It
is common to find a giant or at least a sub-giant planet in these
systems. The systems are more spread out in terms of semi-major
axis range, but we can still find clusters of small terrestrial plan-
ets, which are shifted inward, very close to the star, at a fraction
of an AU. These visible differences allow us to easily classify a
system as ‘host an ELP’ or ‘does not host an ELP’. To use these
features in an ML model, we need to quantify them, describing
each system with a limited number of features.
Our choice of features, which we believe best capture the

differences observed visually, is as follows:

— number of visible planets

— number of giant planets (M, > 100 Mg)

— IDP’s mass,
to which we add the star’s mass, known to be correlated with
the type of planets present in the system. Indeed, as studied in
Section 2.2, the proportion of systems with ELPs is not the same
in the three populations because the central star’s mass plays
a role in planetary formation. These five features make up our
second set.

3.4. Train and test dataset

For this study, we utilise three different populations of synthetic
planetary systems. Initially, we train our algorithm on a ‘train-
ing set’, where each system is labelled as ‘True’ (host an ELP)
or ‘False’ (does not host an ELP). Thus, the algorithm learns to
recognise which systems host an ELP and which are ELP-free.
This training set comprises the majority (80%) of our synthetic
systems. Once the algorithm is trained, we can test it on a ‘test
set’, which is an unlabeled dataset on which the model makes
predictions to analyse its responses and determine its precision
and recall scores. The test set consists of the remaining 20% of
the dataset to ensure that the systems on which we test the algo-
rithm are not the same as those on which it was trained, which
would bias the results.

It is also important to ensure that the different proportions are
respected in both datasets. For example, if the test set comprises
80% of systems with an ELP while the overall proportion in the
population is 40%, the test is biased.

To ensure a consistent training and test set, we divided
the systems with an ELP from the systems without an ELP
(=ELP) in each distinct population, resulting in six sub-
groups (1 Mo/ELP, 1 Mo/-ELP, 0.5 Mo/ELP, 0.5 My/—ELP,
0.2 Mo/ELP, and 0.2 My/—ELP, where ELP means the systems
with at least one ELP and —ELP means the systems without any
ELPs). Then, 80% of each subgroup constitutes the training set,
and the remaining 20% forms the test set. When creating training
and test sets with the three mixed populations, we ensure that
the proportion of each population remains the same. Thus, we
choose the population with the fewest systems and adjust the
other populations to match this number. This way, we ensure
that we have the same proportion of systems from each popula-
tion (1, 0.5, and 0.2 M) in both datasets. On the other hand, we
do not scale the number of systems with and without ELP. The
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Fig. 2. Bee swarm plot of the seven features considered. The x-axis rep-
resents the SHAP value of the feature for each instance, and the y-axis
represents the seven features considered ranked from the most important
(top) to the least (bottom). The colour of the dots represents the value
of the feature itself, red being high values and blue being low values.

proportion of systems with ELP in each population is a feature
in itself that the model must account for.

Once trained on the training set, we test the algorithm on the
test set and calculate its performance using the different scores.
We then apply it to a list of observed planetary systems to predict
whether a system is likely to host an ELP or not. This likelihood
is characterised by the algorithm’s voting rate.

4. Results

To optimise the classification model, we first conduct several
tests on the training data and the systems’ descriptive features,
described in the following paragraphs. Once the best strategy
is identified, we use the model trained on a sample of 1567
observed systems to predict the presence of an ELP.

4.1. Features analysis

As discussed in Sections 3.3.1 and 3.3.2, we have selected seven
potentially useful descriptive features for this study. As men-
tioned in Section 3.3, we need to identify the ones that provide
the most information about the presence of an Earth-like planet
to maximise the performance of the Random Forest model.

To select the most useful features, we conduct a feature anal-
ysis. We apply the Shapley value concept to assess the features’
importance of all the features described in Sect. 3.3. Originat-
ing from cooperative game theory, Shapley values are frequently
used in machine learning to analyse the importance of fea-
tures. They represent each feature’s contribution to the model’s
prediction by evaluating all possible feature combinations and
measuring the impact of adding or removing each feature.

Fig. 2 presents a bee swarm plot where each point represents
the SHAP (SHapley Additive exPlanations) (Lundberg & Lee
2017) value of a specific feature for an individual instance in the
dataset. This visualisation shows how each feature’s contribu-
tion affects the model’s prediction for that instance. The y-axis
lists the features from most influential (top) to least influential
(bottom), while the x-axis shows the SHAP value of each fea-
ture for each dataset instance. Negative SHAP values indicate a
stronger contribution to the decision ‘without ELP’, while posi-
tive values indicate a stronger contribution to the decision ‘with
ELP’. Additionally, the colour of the points represents the feature
value itself, with higher values in red and lower values in blue. In

A94, page 5 of 11



Davoult, 1., et al.: A&A, 696, A94 (2025)

this diagram, we have removed systems with no visible planets
to facilitate readability. Indeed, when no planets are visible in a
system, the IDP’s mass, radius, and period are set to —1000 to
indicate the absence of values for these features. This procedure
results in the final bee swarm plot being polluted by very low
values, making it difficult to interpret the values of the different
features.

From Fig. 2, we observe that architecture emerges as the most
important feature, with lower values indicating a greater likeli-
hood of containing an ELP. We assigned values from 1 to 5 to the
architectures (n = 1: 1, Low-mass: 2, Anti-Ordered: 3, Ordered:
4, Mixed: 5). A low value for the architecture indicates either n =
1 or Low-mass, which are the dominant classes hosting an ELP.

The period and mass of the innermost detectable planet
(IDP) also play a significant role. Systems where the IDP has
a greater distance from the star are more likely to be classified as
‘with ELP’, consistent with the findings of D24. Conversely, sys-
tems with a less massive IDP are also more likely to be classified
as ‘with ELP’, further supporting D24’s results.

The impact of the IDP’s radius is nuanced, as observed in
D24: for a given architecture, either a larger or smaller IDP
radius can be more favourable for detecting an ELP. This makes
it a more difficult characteristic to use, because there is no
clear cut.

The number of visible planets, although lower ranked, also
provides valuable information: the more visible planets there are,
the less likely the system is to host an ELP, which confirms the
observations discussed in Section 3.3.2.

However, the influence of the central star is not consistent
with the first analysis, which showed that systems around stars
of 0.2 My had proportionately fewer ELPs (only 40% of sys-
tems, compared with 75 and 60% for 0.5 and 1 M, respectively).
In this representation, we have removed systems without planets
larger than 0.5 Mg (see Appendix A of D24). However, the vast
majority of these empty systems are systems without any ELP,
which reverses the proportion of systems with ELP if they are
not considered. In this representation, we therefore have systems
with a low-mass star (blue represents stars of 0.2 M) classified
as having an ELP, systems with a star of 1 M, (red) classified
as having no ELP, and systems with a star of 0.5 M, being hard
to classify because they have almost equal numbers of systems
with and without ELP.

Finally, the number of giant planets in the system provides
limited information. Specifically, as the number of giant planets
increases, the model tends to classify the system as ELP-free.
However, in the absence of giant planets, the model has difficulty
making a clear decision. This mirrors the data observed: systems
with giant planets are much less likely to have an ELP, while
those without giant planets may or may not host an ELP.

Based on Fig. 2, it appears that the most important features
are the architecture, and the mass and period of the innermost
detectable planet (IDP).

To compare the performance of the Random Forest Classi-
fier based on the descriptive features used, we conducted four
tests, each time changing the descriptive features. The first
test includes all features, the second includes only manually
selected features (Sect. 3.3.2), the third includes features derived
from D24 (Sect. 3.3.1), and the fourth includes the top features
selected from Fig. 2. Those four tests are resumed in Table 2.

Table 3 displays the Random Forest results for voting rate
thresholds of 50% (default), 70, 80, and 90%. For each test
and each threshold, the table shows the confusion matrix and
the precision score (PS). As a reminder, a confusion matrix is
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Table 2. List of planetary systems features used in each test.

N° test Features included

Testn°1 All

Test n°2 NdCtCC’ Ngianb MIDPs M*

Test n°3  Rmpp, Mipp, Pipp, architecture, M,
Test n°4  Mipp, Pipp, architecture, M,

TN FP

constructed as FN T P)’ with TN and FN representing True

Negatives and False Negatives, and TP and FP representing True
Positives and False Positives. The confusion matrix is beneficial
in unbalanced datasets like this one. It allows us to assess not
only whether the model correctly classifies the instances but also
its performance (very few false positives and true positives indi-
cate that the model struggles to understand what a system with
an ELP looks like).

Unsurprisingly, for the default threshold of 50%, the results
are fair but not excellent. True positive answers account for just
above 80% of all positive answers. As the threshold increases,
the precision score improves, indicating the model’s ability to
recognise patterns that distinguish systems with ELPs. Increas-
ing the precision score also means increasing the TP/FP ratio.
However, in these cases, we also notice an increase in false
negatives (FN), indicating that the model becomes more con-
servative, missing more positives in its effort to reduce false
positives. From a threshold of 80%, all three tests show precision
scores above 0.9, indicating that true positives account for 90%
of the model’s positive predictions, demonstrating its excellent
capability.

Although the four tests show similar overall performance, a
closer look into the confusion matrix reveals that Test n°1 is less
effective than the other three tests. Specifically, above 90%, Test
n°1 shows fewer TP and FP, resulting in fewer overall positive
answers. While the ratio between TP and FP remains similar, the
lower number of total positive answers indicates that it recog-
nises systems with an ELP less effectively. Tests n°2 exhibits
a slightly lower PS for all thresholds above 80%. Test n°3 and
Test n°4 show same precision score for thresholds above 80%
but Test n°4 exhibit slightly fewer False Negative and more True
Positive, this reflects its ability to recognise a system with an
ELP more effectively. For this reason, Test N°4 is used in the
remainder of the study.

4.2. Population analysis

Now that we have determined the features to use, we need to
decide on which populations of synthetic systems the model
should be trained to achieve optimal performance. Several strate-
gies are considered:

— Mass-Specific Training: to predict the outcome of a system,
we use a model trained exclusively on systems with similar
central star’s mass. The star’s mass is not a feature provided
to the model but is considered when choosing which training
data to use.

— Global Population Training: we train the model on a com-
bined population that includes systems with central stars of
different masses, regardless the central star’s mass. Here,
the star’s mass is an input to the model so that it can
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Table 3. Performance results of the model trained on four different tests. The Test n°1 uses all the features.

Test n°1 Test n°2 Test n°3 Test n°4
50% (1&385 l248551)135:0.84 (1103217 1343310) PS=0.81 (?28 134%89) PS=0.83 (1&641 ﬁ%) PS=0.83
70% (]200985 123.2951)PS=0'86 (1211050 1235486) PS=0.84 (1202663 1238;5) P$S=0.86 (]1]9%16 1234727) PS=0.85
80% (1835099 71410) PS=0.99 (1831317 72510) PS=0.97 (1826801 71670) PS=0.98 (1738288 72803) PS=0.98
90% (}fég 1‘7‘6) PS=0.98 (193;435 51838) PS=0.98 (1924920 659) PS=0.99 (1836413 7?0) PS=0.99

Notes. Test n°2 uses the number of detectable planets, number of giant planets, mass of the innermost detectable planet and central star’s mass.
Test n°3 uses the radius, mass and period of the innermost detectable planet, the architecture of the system and the mass of the central star. Test n°4
corresponds to the most important features: the mass and period of the innermost detectable planet, the architecture of the system and the mass of
the central star. The different percentages correspond to different voting rate thresholds of the Random Forest.

Table 4. Different training population used in the tests.

Population name  Synthetic population included

MS-1 1 Mg

MS-0.5 0.5 Mg

MS-0.2 0.2 Mg

Subset 1My +0.5 M,

Global 1 My +0.5Mg+0.2 Mg

differentiate between different types of systems mixed in the

overall training population.

— Subset Training: we create subsets of training data. For
example, we train the model on populations of systems with

1 and 0.5 M, stars together because they share similarities,

particularly in terms of the proportion of systems with an

ELP (60% for solar-mass stars and 74% for 0.5 M, stars,

compared to only 40% for 0.2 M, stars), and separately on

the population with 0.2 M,, stars.
We construct several training populations to evaluate which strat-
egy is best. These populations are summarised in Table 4. We
then train the Random Forest, and test it for each strategy. The
results are shown in Table 5.

A quick glance shows that the last two populations (Subset
and Global) yield very similar results. The models trained on
the three populations built for the Mass-Specific strategy (MS-1,
MS-0.5 and MS-0.2) show however different results: the model
trained on MS-1 and MS-0.5 have better results than on MS-
0.2. This can be explained both by the fact that the population
of 0.2 M, stars is unbalanced negatively (only 40%) of systems
host an ELP) but also because there are a lot less systems in this
population than in the two others. After correction for empty sys-
tems, the MS-0.2 has 4862 systems, MS-0.5 has 10 158 systems
and MS-1 has 20365 systems. Although above a threshold of
90%, all populations yield the same result (PS = 0.99) except
for MS-0.2 (PS = 0.94), we chose the mass-specific strategy.
This strategy allows for the maximum use of training data and
helps avoid overfitting. For the subset training and global train-
ing strategies, populations are scaled to have the same number
of systems. In other words, systems are randomly removed from
the larger populations to match the number of data points in the
smallest population.

4.3. Prediction of detection

The developed and trained model can now be used to predict
which systems are most likely to host an ELP. We use a sample of
1567 known systems around MKG stars from exoplanet.eu!
(Schneider et al. 2011) in which at least one planet and its mass
is known, regardless its detection method.

The dataset is then divided into three subsets: 1025 systems
with central star masses between 0.7 and 1.2 M, 342 systems
with central star masses between 0.35 and 0.7 M, and 200 sys-
tems with central star masses less than 0.35 M. Each subset
corresponds to a specific training dataset: 1, 0.5, and 0.2 M,
respectively. We apply the same observational bias to each sub-
group as described in Section 3.2, according to the mass of the
central star. For each system, we extract the corresponding fea-
tures for Test n°4: the system’s architecture with planets that
overpass the observational bias, the mass, and the period of the
IDP, if one planet remained in the system after applying the bias.
We then use the model trained on the populations correspond-
ing to each subset to obtain the voting rate of each planetary
system. Among the 1567 total systems in the three subsets, 51
achieved a voting rate of more than 90%. We exclude binary
systems because the Bern model produced only single stars and
the habitable zone is calculated differently in binaries (Haghigh-
ipour 2015), and the 44 remaining systems with their associated
voting rates are listed in Table 6.

To evaluate the possibility of a planet’s existence in these sys-
tems, we use the stability criterion from Fabrycky et al. (2014),
which was also employed in Chen et al. (2024). The Hill-stability
criterion H is defined as:

Aout — din
Ry

H= , (%)
with aj, and a,y referring to the semi-major axes of the inner and
outer planets, respectively, and Ry being the mutual Hill radius
relevant for dynamical interactions (Fabrycky et al. 2014):

Ry = (Min + ]woul)l/3 (@in + aour) (6)

M, 2 ’

with M;, and My, being the masses of the inner and outer
planets, respectively, and M, being the mass of the star. For a

I Available at https://exoplanet.eu/catalog/
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Table 5. Performance results of the model trained on different populations.

50% 70% 80% 90%

o [ D [ e ([ o (% ko
MS-0.5 (%g 1456166) PS=0.77 (28 f‘f765) PS=0.77 (1438128 2;6) PS=0.97 (28674 1%0) PS=0.99
MS-0.2 (89317 fz) PS=0.93 (89338 420) PS=0.95 (89358 328) PS=0.95 (ﬁ? 116) PS=0.94
Subset (411431(7) 2596263) PS=0.84 (383 2580514) PS=0.85 (1956546 12(9)7) PS=0.98 (1968722 1%1)PS=99
Global (1](21 1248277) PS=0.83 (1]19046 ]234727) PS=0.85 (1738288 72803) PS=0.98 (1836411 7?0) PS=99

Notes. MS-1, MS-0.5 and MS-0.2 are used in the Mass-Specific training strategy and correspond to individual populations. Subset corresponds to
the population of 0.5 and 1 M, stars combined for the Subset strategy. Global population is the three populations combined for the global strategy.

two-planet system, Chen et al. (2024) defines H > 7.1 for the sys-
tem to be stable. In a system with more than two planets, a more
stringent criterion is used:

Hin + Houl > lSs (7)

with Hi, and Hgyy being the Hill-stability criteria for the inner
and outer planet pairs.

Figures 3, 4 and 5 present the systems identified as potential
candidates for hosting an ELP in a mass-semi-major axis dia-
gram around G stars, early-M and late-K stars, and late-M stars
respectively. The dots indicate the already existing planets: black
dots represent visible planets for which we know the mass and
are the planets used to assess the voting rates of a system. Grey
dots represent planets for which we know the mass but with a RV
semi-amplitude lower than the detection bias (they do not con-
tribute to the determination of the architecture). Finally, orange
points represent planets for which we only know the radius, and
the mass has been derived using the mass-radius relationship
from Parc et al. (2024). The latters are only used to evaluate the
stability of a system with an additional planet, but they are not
used in the model. The green areas outline the regions defining
an ELP in terms of mass and equilibrium temperature. The grey
areas correspond to regions where the Hill-stability criterion is
met and where the presence of an additional planet is possible.
The green and grey areas overlap in most of systems identified by
our algorithm, indicating the potential for an ELP in these sys-
tems. Particularly, for G stars, only the system HIP 41378 does
not seem stable with the addition of an ELP. However, if we knew
the precise mass of the four planets represented by an orange
dot, the model would not have classified it in the category ‘with
ELP’. For late-K and early-M stars, all of the systems seem stable
while adding an ELP. Finally, for late-M stars, only GJ 273 does
not seem stable while adding an ELP. These results highlight the
effectiveness of our model: 95.5% of the systems identified as
likely to host an ELP can theoretically host one.

5. Discussion and conclusion
5.1. Discussion

The model presented in this work presents a few limitations and
avenues to improvement that we would like to discuss. Firstly,
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using this model on a sample of known and observed plane-
tary systems involves assuming that the Bern model accurately
replicates observed planetary systems and that the properties cor-
related with the presence of an Earth-like planet in synthetic
systems are the same in real planetary systems. In reality, the
synthetic systems modelled with the Bern model only partially
resemble actual planetary systems. Other studies (Mulders et al.
2019; Schlecker et al. 2021a; Burn et al. 2021; Mishra et al. 2021,
2023; Burn et al. 2024; Emsenhuber et al. 2025) have shown
that populations of planetary systems replicate the basic patterns
observed in actual planetary populations. The populations of
synthetic systems calculated using the Bern model demonstrate
a positive correlation between the occurrence of inner Super-
Earths and cold Giants (Schlecker et al. 2021a), albeit weaker
than those observed in studies such as Zhu & Wu (2018). Addi-
tionally, the model captures trends related to dependencies on
stellar metallicity (Schlecker et al. 2021a; Emsenhuber et al.
2025) and stellar mass (Burn et al. 2021), as well as patterns
in period ratio distributions (Mulders et al. 2019; Burn et al.
2021; Emsenhuber et al. 2025) and eccentricity distributions
(Burn et al. 2021; Emsenhuber et al. 2025). Notable architectural
features include similarities and mass or size ordering (Mishra
et al. 2021), the ‘peas-in-a-pod’ structure (Mishra et al. 2021),
a bimodal mass function distinguishing sub-Neptunes and Gas
Giants (Mulders et al. 2019; Emsenhuber et al. 2025), and a
mean observed multiplicity of approximately 1.6 (Emsenhuber
et al. 2025). Despite these successes, the model has limitations
in reproducing certain observed characteristics of planetary pop-
ulations. For example, the positive correlation between Super
Earths and cold Giants is weaker than observed (Schlecker et al.
2021a). Moreover, the model predicts an overproduction of plan-
ets per system — by at least a factor of 1.7 (Mulders et al. 2019;
Emsenhuber et al. 2025). Synthetic planets also tend to be closer
to their stars than observed (Mulders et al. 2019; Emsenhuber
et al. 2025), and the mass distribution does not align precisely
with observations (Emsenhuber et al. 2025). Finally, the model
produces an excess of planets in or near mean-motion resonances
(Mulders et al. 2019; Burn et al. 2021; Emsenhuber et al. 2025),
which is inconsistent with the distribution seen in observed sys-
tems. In summary, planetary system populations are realistic at
the system and architectural scale rather than at the individual
planet scale. These results suggest that we can consider synthetic
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Fig. 3. Systems around G stars with a resulting voting rate above 90%. The green areas represent the definition of an Earth-like planet in the study
in terms of equilibrium temperature and mass. The grey areas represent the combinations of mass and semi-major axis for which the Hill-stability
criterion is met with the addition of a new planet. The black dots correspond to planets for which we know the mass, and the orange dots correspond
to planet for which we only know the radius, and the mass has been derived thanks to the work of Parc et al. (2024).
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the Hill-stability criterion is met with the addition of a new planet. The black dots correspond to the planets already known in these systems.
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Fig. 5. Systems around late-M stars with a resulting voting rate above 90%. The green areas represent the definition of an Earth-like planet in the
study in terms of equilibrium temperature and mass. The grey areas represent the combinations of mass and semi-major axis for which the Hill-
stability criterion is met with the addition of a new planet. The dots represent the planets already known in those systems: the black dots for planets
with a RV semi-amplitude above the threshold of detection bias (detectable planets) and the grey dots for the planets with a RV semi-amplitude
below this threshold. Only the detectable planets count in the calculation of the architecture of the systems.
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Table 6. List of 44 systems achieving a voting rate (VR) of over 90%.

System VR  Reference

G stars
HD 103949 96%  Feng et al. (2019)
HD 42618 95%  Fulton et al. (2016)
HD 85390 93%  Wittenmyer et al. (2019)
HIP 41378 97%  Vanderburg et al. (2016)
Kepler-22 92%  Borucki et al. (2012)
Kepler-538 96%  Mayo et al. (2019)
KMT-2021-BLG-0171L 94%  Yang et al. (2022)

Late-K and early-M stars

OGLE-2017-BLG-1691L.  97%  Han et al. (2022)
GJ 685 92%  Pinamonti et al. (2019)
Gl 514 95%  Damasso et al. (2022)
HD 147379 96%  Reiners et al. (2018)
HD 211970 92%  Feng et al. (2019)
HIP 71135 95%  Feng et al. (2019)
K2-286 94%  Diez Alonso et al. (2019)
KMT-2022-BLG-0440L.  98%  Zhang et al. (2023)
KMT-2022-BLG-0475 92%  Han et al. (2023)
OGLE-2007-BLG-368L  96%  Sumi et al. (2010)
OGLE-2015-BLG-0966L.  96%  Street et al. (2016)
OGLE-2015-BLG-1670L  96%  Ranc et al. (2019)
OGLE-2018-BLG-0506 96%  Hwang et al. (2022)
OGLE-2018-BLG-0516 95%  Hwang et al. (2022)
OGLE-2018-BLG-1126 96%  Gould et al. (2022)
OGLE-2018-BLG-1185 96%  Kondo et al. (2021)
TCP J050742+244755 97%  Nucita et al. (2018)
TOI-1231 91%  Burtetal. (2021)
TOI-2285 91%  Fukui et al. (2022)

Late-M stars
G 9-40 91% Stefansson et al. (2020)
GJ 1061 98%  Dreizler et al. (2020)
GJ 1132 94%  Bonfils et al. (2018)
GJ 273 92%  Pozuelos et al. (2020)
GJ 3323 95%  Astudillo-Defru et al. (2017b)
GJ 357 98%  Jenkins et al. (2019)
GJ 3929 91% Kemmer et al. (2022)
GJ 3988 91%  Gorrini et al. (2023)
GJ 581 98%  von Stauffenberg et al. (2024)
L 98-59 98%  Demangeon et al. (2021)
LHS 1140 95%  Dittmann et al. (2017)
Teegarden’s 95%  Dreizler et al. (2024)
TOI-1680 91%  Ghachoui et al. (2023)
TOI-2096 98%  Pozuelos et al. (2023)
TOI-2136 91%  Gan et al. (2022)
TOI-237 92%  Waalkes et al. (2021)
Wolf 1061 98%  Astudillo-Defru et al. (2017b)
YZ Cet 98%  Astudillo-Defru et al. (2017a)

planetary systems as proxies for real systems when examining
architectures and correlations between planetary properties.
Another limitation of the model is the limited amount of
training data: there are only between 5000 and 20 000 instances
depending on the populations, due to the time required to
generate synthetic systems. This issue could be addressed by
the upcoming work of Alibert et al. (2024), which employs a

A94, page 10 of 11

transformer-based generative model to emulate the Bern model
and generate millions of synthetic planetary systems in an hour.

Finally, another weakness of the study is the simplistic
approach to handling observational bias, which does not account
for various factors that may influence planet detection, such as
stellar activity, the presence of other planets in the system, obser-
vation frequency, and orbital period. Forthcoming works should
address this issue.

5.2. Conclusion

In this work, we have developed a model using a Random For-
est Classifier to predict which known planetary systems are most
likely to host an Earth-like planet. The model was trained on
a dataset of synthetic planetary systems from the Bern model
to which we applied an observational bias to extract observable
properties. We conducted tests to determine the optimal descrip-
tive features of synthetic systems to enhance model performance,
finding that the mass, period of the innermost detectable planet
(IDP), and system architecture are the three properties that pro-
vide the most information about the presence of an Earth-like
planet. These findings are consistent with the results of Davoult
et al. (2024).

The model demonstrated excellent performance, achieving a
precision score of up to 0.99 on the test datasets, which means
that 99% of the positive predictions were True Positives. This
result proves that the model can accurately identify the properties
of systems with and without ELPs within a dataset derived from
the Bern model.

Therefore, we used the model to predict the presence of an
Earth-like planet in a sample of 1567 observed GKM systems,
for which we know at least one planet and the properties neces-
sary for the model to function (the mass and semi-major axis or
period of at least one planet and the mass of the central star). The
results indicate that 44 systems (listed in Table 6) exhibit archi-
tectures suggesting the presence of an Earth-like planet. Further
study of the stability state of these systems with the addition of a
new planet has shown that 95.5% of those systems would remain
stable with the addition of an Earth-like planet.

We caution that the results heavily rely on the Bern model
and should be interpreted cautiously. However, we recommend
prioritising the study of these systems because both positive and
negative outcomes provide conclusive findings. Negative results
would indicate that the Bern model is having difficulty repro-
ducing the architecture of the systems, and would be a path
for improvement. In the context of predicting exoplanet detec-
tion using global models of planetary formation, it is crucial to
link observations with theoretical models to rigorously test them
closely.
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