Bleh, Alexander und Morsbach, Christian (2025) Consideration of Non-Locality for Gene Expression Programming: Modeling the Transition to Turbulence in the Boundary Layer. Flow Turbulence and Combustion, 115 (3/2025), Seiten 1133-1155. Springer. doi: 10.1007/s10494-025-00654-7. ISSN 1386-6184.
|
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
3MB |
Kurzfassung
The consideration of the inherently non-local characteristics of turbulence is an open challenge and subject to many investigations. Recent approaches rely on the utilization of spatially configured Neural Networks such as e.g. Convolutional Neural Networks to account for non-local effects. Nevertheless, approaches featuring Neural Networks are not easily available for Gene Expression Programming. An alternative option, to consider non-local effects, is the use of partial differential equations (PDE) like an additional convection-diffusion equation as is done for example in several transition models such as the gamma-model by Menter et al. Consequently, instead of only modeling a local correction factor directly using GEP, we equip the input quantities with an additional optional convection-diffusion equation of which we model the production term, diffusion constants and boundary type. The methodology is applied on a set of low pressure turbine testcases in order to find transition models. Resulting expressions are further analysed in terms of underlying mechnims and logical foundations.
| elib-URL des Eintrags: | https://elib.dlr.de/221222/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
| Titel: | Consideration of Non-Locality for Gene Expression Programming: Modeling the Transition to Turbulence in the Boundary Layer | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 15 April 2025 | ||||||||||||
| Erschienen in: | Flow Turbulence and Combustion | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Nein | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||
| Band: | 115 | ||||||||||||
| DOI: | 10.1007/s10494-025-00654-7 | ||||||||||||
| Seitenbereich: | Seiten 1133-1155 | ||||||||||||
| Verlag: | Springer | ||||||||||||
| Name der Reihe: | Special Issue: Machine Learning for Fluids | ||||||||||||
| ISSN: | 1386-6184 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Gene Expression Programming, Data-driven, Turbulence, Transition, Non-locality | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||
| HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
| DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||
| Standort: | Köln-Porz | ||||||||||||
| Institute & Einrichtungen: | Institut für Antriebstechnik > Numerische Methoden | ||||||||||||
| Hinterlegt von: | Bleh, Alexander | ||||||||||||
| Hinterlegt am: | 15 Dez 2025 20:19 | ||||||||||||
| Letzte Änderung: | 15 Dez 2025 20:19 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags