elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

An unstructured high-order finite-volume scheme for the simulation of reactive multi-species flows

Setzwein, Florian und Ess, Peter und Gerlinger, Peter (2026) An unstructured high-order finite-volume scheme for the simulation of reactive multi-species flows. Journal of Computational Physics, 545, Seite 114449. Elsevier. doi: 10.1016/j.jcp.2025.114449. ISSN 0021-9991.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
7MB

Offizielle URL: https://doi.org/10.1016/j.jcp.2025.114449

Kurzfassung

In this work, a high-order finite-volume method is combined with an iterative projection approach to solve transport equations for reactive fluids in the low-Mach number regime. The proposed solution algorithm is fully collocated in both space and time and employs a vertex-centered -exact discretization to achieve truly third-order spatial accuracy, even on fully unstructured median-dual grids. To enhance both accuracy and robustness, viscous and convective fluxes are treated consistently within the high-order framework. Convective fluxes are discretized using a central face-value approximation augmented with adaptive numerical dissipation control, governed by a novel gradient-limiting strategy that selectively reduces the order of accuracy near strong gradients while minimizing artificial dissipation elsewhere. The performance of the method is assessed against a conventional finite-volume scheme for unstructured grids, with a focus on reducing the number of computational elements required for accurate simulations. Benchmark test cases include the isochoric advection of a hydrogen-oxygen mixture, convection of a pseudo-isentropic vortex, and flame kernel–vortex interaction. As a key extension, a large-eddy simulation of a turbulent hydrogen-nitrogen-air diffusion flame on a fully unstructured three-dimensional grid is presented, demonstrating the method’s capability to handle complex variable-density reactive flows in practical combustion scenarios. Results show that the k-exact scheme achieves accurate predictions even on relatively coarse grids, substantially reducing computational cost while maintaining physical fidelity - underscoring its potential for reactive flow simulations in both industrial and research applications.

elib-URL des Eintrags:https://elib.dlr.de/221180/
Dokumentart:Zeitschriftenbeitrag
Titel:An unstructured high-order finite-volume scheme for the simulation of reactive multi-species flows
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Setzwein, FlorianFlorian.Setzwein (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ess, PeterPeter.Ess (at) dlr.dehttps://orcid.org/0000-0002-1605-5175199875335
Gerlinger, PeterPeter.Gerlinger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 Januar 2026
Erschienen in:Journal of Computational Physics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:545
DOI:10.1016/j.jcp.2025.114449
Seitenbereich:Seite 114449
Verlag:Elsevier
ISSN:0021-9991
Status:veröffentlicht
Stichwörter:High-order discretization, Finite-volume method, Unstructured grids, Fractional step methods, Variable-density reacting flows in low Mach number regime, K-exact discretization schemes
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E VS - Verbrennungssysteme
DLR - Teilgebiet (Projekt, Vorhaben):E - Verbrennungs- und Kraftwerkssysteme, L - Komponenten und Emissionen, R - Projekt TAUROS (TAU for Rocket Thrust Chamber Simulation)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Verbrennungstechnik > Computersimulation
Hinterlegt von: Ess, Dr. Peter
Hinterlegt am:16 Dez 2025 10:25
Letzte Änderung:16 Dez 2025 10:28

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.