elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

In Silico Materials Screening for Thermochemical Looping Applications Using Direct and Indirect Property Prediction Methods

Koch, Daniel und Biedermann, P. Ulrich und Dashjav, Enkhtsetseg und Goeres, Jan Lukas und Brandenburg, C. Mathieu und Agrafiotis, Christos und Pein, Mathias und Klaas, Lena und Roeb, Martin (2025) In Silico Materials Screening for Thermochemical Looping Applications Using Direct and Indirect Property Prediction Methods. 7th Materials Chain International Conference, 2025-09-22, Bochum, Deutschland.

[img] PDF
1MB

Kurzfassung

Thermochemical cycles involving the reversible reduction and oxidation of metal oxides are frequently investigated as a possibility for the conversion and storage of thermal energy from renewable sources. Heat provided by, for example, concentrated solar power (CSP) can be used to produce sustainable fuels using metal oxide-based thermochemical reaction cycles. Redox-active metal oxides have also been proposed for short-term thermochemical heat storage in CSP plants to ensure a continuous power generation despite the intermittency of solar energy. Among the materials previously reported for these applications, perovskite oxides are one of the most promising material classes for many types of thermochemical cycles. Nevertheless, further efficiency improvements are required for competitive solar-thermal fuel or electricity production at the heart of which is the need for novel high-performance oxide looping materials. While first-principles calculations using density functional theory (DFT) have become a ubiquitous tool in materials research for identifying novel materials with desired chemical or physical properties, the large compositional and structural variability of metal oxides makes a broad computational screening for thermochemical looping materials challenging. Furthermore, an accurate representation of the non-stoichiometric oxygen defect formation in perovskites requires large simulation cells not suitable in high-throughput calculations due to the prohibitive computational cost. To mitigate these issues, we have employed both direct and indirect property prediction methods in the search for novel oxide materials for thermochemical heat storage and air separation applications. Using existing and own DFT data, complex mechanical and thermodynamic oxide property estimates were inferred from simpler material features via direct prediction methods using existing regression and machine learning models. Furthermore, reported machine-learned interatomic force fields were used for indirect property predictions using them to calculate perovskite defect thermodynamics on a large scale and with high defect concentration resolution. The employed computational materials design approach allowed for a significantly accelerated candidate compound selection compared to a conventional DFT-only study. The identified materials can serve as rational starting points for further computational and experimental validation.

elib-URL des Eintrags:https://elib.dlr.de/220890/
Dokumentart:Konferenzbeitrag (Poster)
Titel:In Silico Materials Screening for Thermochemical Looping Applications Using Direct and Indirect Property Prediction Methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Koch, Danieldaniel.koch (at) dlr.dehttps://orcid.org/0000-0003-4775-6879NICHT SPEZIFIZIERT
Biedermann, P. Ulrichulrich.biedermann (at) dlr.dehttps://orcid.org/0000-0002-6708-8241NICHT SPEZIFIZIERT
Dashjav, Enkhtsetsegenkhtsetseg.dashjav (at) dlr.dehttps://orcid.org/0000-0002-7823-7759NICHT SPEZIFIZIERT
Goeres, Jan Lukasjan.goeres (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Brandenburg, C. Mathieucedric.brandenburg (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Agrafiotis, ChristosChristos.Agrafiotis (at) dlr.dehttps://orcid.org/0000-0002-7140-9642NICHT SPEZIFIZIERT
Pein, MathiasMathias.Pein (at) dlr.dehttps://orcid.org/0000-0002-2796-1229NICHT SPEZIFIZIERT
Klaas, LenaLena.Klaas (at) dlr.dehttps://orcid.org/0000-0003-0671-2335NICHT SPEZIFIZIERT
Roeb, MartinMartin.Roeb (at) dlr.dehttps://orcid.org/0000-0002-9813-5135NICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:thermochemical processes; computational modeling; property prediction
Veranstaltungstitel:7th Materials Chain International Conference
Veranstaltungsort:Bochum, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:22 September 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Chemische Energieträger
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe, E - Thermochemische Prozesse
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Future Fuels > Solarchemische Verfahrensentwicklung
Institut für Future Fuels
Hinterlegt von: Koch, Daniel
Hinterlegt am:12 Dez 2025 09:36
Letzte Änderung:12 Dez 2025 09:36

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.