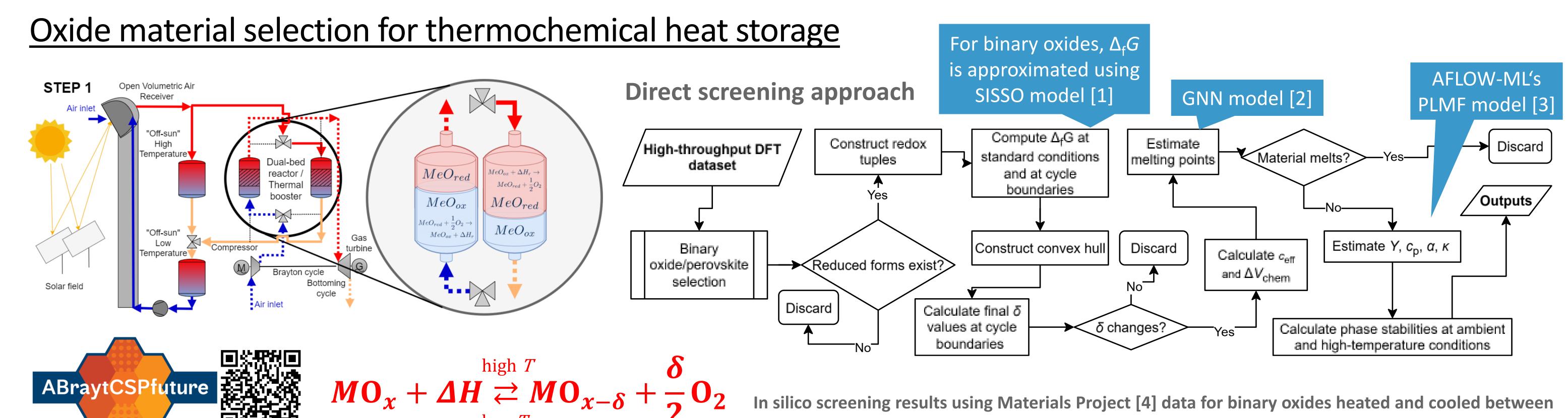
In Silico Materials Screening for Thermochemical Looping Applications Using Direct and Indirect Property Prediction Methods

D. Koch,* P. U. Biedermann, E. Dashjav, J. Goeres, C. M. Brandenburg, C. Agrafiotis, M. Pein, L. Klaas, and M. Roeb German Aerospace Center (DLR), Institute of Future Fuels | *Email: daniel.koch@dlr.de

Summary: We use direct and indirect property prediction methods reported in literature to computationally assess the chemical and physical properties of metal oxides relevant for thermochemical looping applications in a high-throughput manner. The results serve as starting points for further computational or experimental validation of the identified compounds.



Goal: Identify metal oxide materials which can store maximum amount of sensible heat + chemical heat via a reversible redox reaction in an oxygen-containing atmosphere

Boundary conditions:

- Specific stoichiometry/structure, e.g. binary oxides or perovskite oxides
- Stable oxide ceramic bodies during cyclic operation
- Low cyclic expansion/contraction
- High thermal conductivity

In silico screening results using Materials Project [4] data for binary oxides heated and cooled between 300°C and 1200°C in air.

Formula	Heat stored, J/K/g	/\ \/	Melting Point, °C	•	Thermal s, conductivity W/m/k	Stability @ ,RT, k _B T/atom	Stability @ 1200°C, k _B T/atom
PdO_2	1.17	0	1802	201	2.91	1.54	0.02
MnO_2	1.02	-17	1046	193	2.91	0.00	0.00
CoO_2	0.97	-10	2024	109	3.28	0.00	0.37
BaO_2	0.89	2	1639	293	2.98	0.00	0.00
PtO_2	0.78	19	1612	190	2.55	0.00	0.07
Sb_2O_5	0.72	-4	1337	239	2.92	0.00	0.00

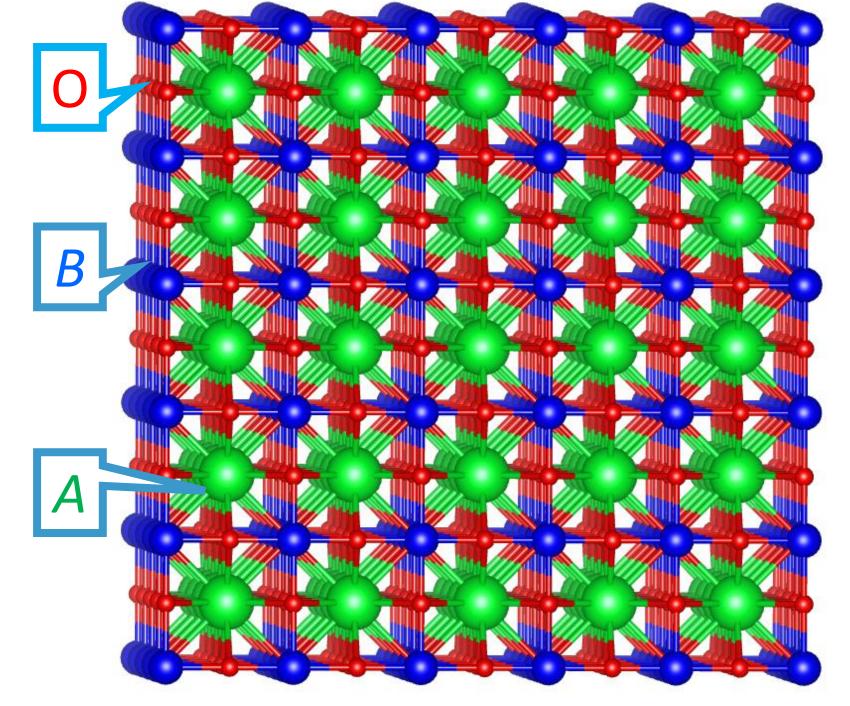
Direct and indirect property prediction methods

property predictions using Material machine learning models can be performed directly by inferring them from simple properties like structure, composition etc. or indirectly by explicitly calculating them using machine-learned interatomic force fields (MLIFFs).

Indirect screening approach

- Select stable perovskite oxide candidate structures containing only non-critical elements from structure database
- Create simulation cells with at least **500** atoms, i.e. $\Delta_{\min} \delta \leq 0.01$
- For each perovskite, remove O atoms up to δ = 0.5, i.e. at least 50 $ABO_{3-\delta}$ structures
- Calculate Gibbs energy changes for reduction reactions using *Orb* MLIFF [5] energy differences and experimental entropy and enthalpy terms for O₂
- Calculate **equilibrium δ values** for different temperatures and p_{02}

Perovskite oxides for chemical looping air separation (CLAS)



$$ABO_{3-\delta_1} \underset{\text{low } T}{\stackrel{\text{high } T}{\rightleftharpoons}} ABO_{3-\delta_2} + \frac{\delta_2 - \delta_1}{2} O_2$$

SolaGrAm project:

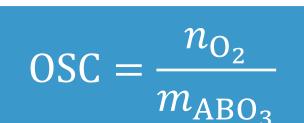
Goal: Identify materials which can remove maximum amount of oxygen from gas phase per mass

Boundary conditions:

- Perovskite oxide structures ABO₃
- Partial reduction mechanism via oxygen vacancies
- Reduced materials have to be reactive at low O₂ partial pressures p_{O2}

High-throughput MLIFF calculation results for CLAS perovskite materials cycled between (1) $p_{02} = 10^{-5}$ bar and T = 350°C, (2) $p_{O2} = 0.21$ bar and T = 700°C with Materials Project [4] starting structures.

Composition	$oldsymbol{\delta_1}$	$oldsymbol{\delta_2}$	Δδ	OSC, 10 ⁻⁵ mol/g
$Sr_{0.75}Mg_{0.25}MnO_3$	0.023	0.297	0.273	156
SrFeO ₃	0.230	0.430	0.200	104
$Sr_{0.75}Ca_{0.25}Mn_{0.125}Fe_{0.875}O_3$	0.229	0.410	0.181	101
$SrCe_{0.5}Fe_{0.5}O_3$	0.008	0.242	0.234	100
$Ba_{0.5}Sr_{0.5}FeO_3$	0.203	0.414	0.211	98
$Ba_{0.125}Sr_{0.875}Mn_{0.125}Fe_{0.875}O_3$	0.167	0.354	0.188	95
CaFeO ₃	0.250	0.370	0.120	84
$Sr_{0.75}Ca_{0.25}Mn_{0.375}Fe_{0.625}O_3$	0.174	0.319	0.146	81
$La_{0.5}Mg_{0.5}Fe_{0.5}Cu_{0.5}O_3$	0.241	0.389	0.148	78
$Ca_{0.5}La_{0.5}Fe_{0.5}Cu_{0.5}O_3$	0.148	0.287	0.139	70



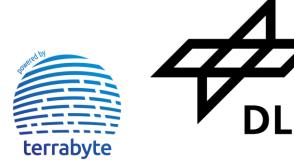
References

[1] C.J. Bartel et al. Nat. Commun. 9 4168 (2018). [2] Q. Hong et al. Proc. Natl. Acad. Sci. U.S.A. 119 e2209630119 (2022). [3] O. Isayev et al. Nat Commun 8 15679 (2017). [4] A. Jain et al. APL *Mater.* **1** 011002 (2013). [5] M. Neumann et al. arXiv:2410.22570 [condmat.mtrl-sci]

Horizon Europe research and innovation programme under grant

agreement No. 101084569.

Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen



 $\bullet \bullet \bullet$