Reitenbach, Stanislaus und Siggel, Martin und Bolemant, Martin (2025) Evolving AI-Driven Workflow Management, Part A: Strategies for Token Window Challenges and Utilization of Provenance Data. In: AIAA SciTech 2024 Forum. AIAA SCITECH 2024 Forum, 2025-01-06 - 2025-01-10, Orlando, USA. doi: 10.2514/6.2025-0701. ISBN 978-162410711-5.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Product development in technical applications has become a highly complex process and is increasingly supported by sophisticated software systems. Traditional workflow management environments for automating the required processes have become very helpful tools. However, the complexity of these expert systems poses significant challenges to engineers and requires increasing levels of expertise. In the past, various approaches provided support to the user in generating complex workflows. Large Language Models (LLMs) as part of the natural language processing have great potential as assistance systems for centralizing expert knowledge. Part A of this two-part paper extends an existing method for automating workflow generation. The focus addresses the challenge of the limited context window length of LLMs. Several approaches have been analyzed and investigated. In addition, a provenance data management system is integrated so that historical information can be included in the generation using LLMs. Part B addresses the challenge of dealing with several possible workflows or ambiguous workflow solutions.
| elib-URL des Eintrags: | https://elib.dlr.de/220612/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Evolving AI-Driven Workflow Management, Part A: Strategies for Token Window Challenges and Utilization of Provenance Data | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | Januar 2025 | ||||||||||||||||
| Erschienen in: | AIAA SciTech 2024 Forum | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.2514/6.2025-0701 | ||||||||||||||||
| ISBN: | 978-162410711-5 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Large Language Models, LLM, Workflow, ChatBot, AI, ML | ||||||||||||||||
| Veranstaltungstitel: | AIAA SCITECH 2024 Forum | ||||||||||||||||
| Veranstaltungsort: | Orlando, USA | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 6 Januar 2025 | ||||||||||||||||
| Veranstaltungsende: | 10 Januar 2025 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||
| HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Antriebstechnik > Triebwerk | ||||||||||||||||
| Hinterlegt von: | Reitenbach, Stanislaus | ||||||||||||||||
| Hinterlegt am: | 13 Dez 2025 02:31 | ||||||||||||||||
| Letzte Änderung: | 13 Dez 2025 02:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags