elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Knowledge Distillation of Large Language Models for Use Cases of the German Aerospace Center

Witossek, Konstantin (2025) Knowledge Distillation of Large Language Models for Use Cases of the German Aerospace Center. Masterarbeit, Universität Leipzig.

[img] PDF
3MB

Kurzfassung

Large Language Models (LLMs) have shown remarkable capabilities; however, their high computational demands present notable challenges for deployment in resource-limited environments, especially in real-time, domain-specific applications at the German Aerospace Center (DLR). This thesis tackles this issue by using Knowledge Distillation (KD) to compress a large, powerful teacher model into a smaller, more computationally efficient student model. This work proposes a comprehensive framework for distilling knowledge from an 8-billion-parameter teacher (LLaMA 3.1) to a 1-billion-parameter student (LLaMA 3.2). The methodology is centred around a DLR-specific use case: an autonomous vehicle system which handles natural language voice commands in real-time, integrating contextual sensor data to ensure safe and efficient command execution. For this purpose, a novel synthetic data generation pipeline was created to build a domain-specific dataset. The distilled student model was tested thoroughly against the teacher model and also a baseline student of the same size. For the DLR-specific task, the distilled model showed better safety-awareness, with a clear reduction in critical failures compared to the baseline. While the improvements on a difficult public function-calling benchmark were more modest, the distillation still led to a big increase in the baseline’s accuracy. These performance gains came together with an eightfold reduction in model size and almost a fivefold boost in inference speed, which shows the model’s potential for on-board deployment. All in all, these results suggest that knowledge distillation is a valid and practical strategy for building efficient and more reliable LLMs for specialised, high-stakes use cases.

elib-URL des Eintrags:https://elib.dlr.de/220552/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Knowledge Distillation of Large Language Models for Use Cases of the German Aerospace Center
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Witossek, KonstantinUniversität LeipzigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
DLR-Supervisor:
BeitragsartDLR-SupervisorInstitution oder E-Mail-AdresseDLR-Supervisor-ORCID-iD
Thesis advisorFligge-Niebling, JuliaJulia.Niebling (at) dlr.deNICHT SPEZIFIZIERT
Datum:2025
Open Access:Ja
Seitenanzahl:97
Status:veröffentlicht
Stichwörter:Machine Learning, Deep Learning, Large Language Models, Knowledge Distillation
Institution:Universität Leipzig
Abteilung:Faculty of Mathematics and Computer Science
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt | DLR FM | DLR Foundation Models [EO], R - Synergieprojekt | DLR FM | DLR Foundation Models [RO], R - Synergieprojekt DLR Foundation Models [SY]
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften
Hinterlegt von: Niebling, Julia
Hinterlegt am:09 Dez 2025 14:50
Letzte Änderung:09 Dez 2025 14:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.