Witossek, Konstantin (2025) Knowledge Distillation of Large Language Models for Use Cases of the German Aerospace Center. Masterarbeit, Universität Leipzig.
|
PDF
3MB |
Kurzfassung
Large Language Models (LLMs) have shown remarkable capabilities; however, their high computational demands present notable challenges for deployment in resource-limited environments, especially in real-time, domain-specific applications at the German Aerospace Center (DLR). This thesis tackles this issue by using Knowledge Distillation (KD) to compress a large, powerful teacher model into a smaller, more computationally efficient student model. This work proposes a comprehensive framework for distilling knowledge from an 8-billion-parameter teacher (LLaMA 3.1) to a 1-billion-parameter student (LLaMA 3.2). The methodology is centred around a DLR-specific use case: an autonomous vehicle system which handles natural language voice commands in real-time, integrating contextual sensor data to ensure safe and efficient command execution. For this purpose, a novel synthetic data generation pipeline was created to build a domain-specific dataset. The distilled student model was tested thoroughly against the teacher model and also a baseline student of the same size. For the DLR-specific task, the distilled model showed better safety-awareness, with a clear reduction in critical failures compared to the baseline. While the improvements on a difficult public function-calling benchmark were more modest, the distillation still led to a big increase in the baseline’s accuracy. These performance gains came together with an eightfold reduction in model size and almost a fivefold boost in inference speed, which shows the model’s potential for on-board deployment. All in all, these results suggest that knowledge distillation is a valid and practical strategy for building efficient and more reliable LLMs for specialised, high-stakes use cases.
| elib-URL des Eintrags: | https://elib.dlr.de/220552/ | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
| Titel: | Knowledge Distillation of Large Language Models for Use Cases of the German Aerospace Center | ||||||||
| Autoren: |
| ||||||||
| DLR-Supervisor: |
| ||||||||
| Datum: | 2025 | ||||||||
| Open Access: | Ja | ||||||||
| Seitenanzahl: | 97 | ||||||||
| Status: | veröffentlicht | ||||||||
| Stichwörter: | Machine Learning, Deep Learning, Large Language Models, Knowledge Distillation | ||||||||
| Institution: | Universität Leipzig | ||||||||
| Abteilung: | Faculty of Mathematics and Computer Science | ||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
| HGF - Programm: | Raumfahrt | ||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt | DLR FM | DLR Foundation Models [EO], R - Synergieprojekt | DLR FM | DLR Foundation Models [RO], R - Synergieprojekt DLR Foundation Models [SY] | ||||||||
| Standort: | Jena | ||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften | ||||||||
| Hinterlegt von: | Niebling, Julia | ||||||||
| Hinterlegt am: | 09 Dez 2025 14:50 | ||||||||
| Letzte Änderung: | 09 Dez 2025 14:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags