Jung, Niklas J. und Rosati, Francesco und Rath, Gabriel L. und Wilhelm, Frank K. und Schuhmacher, Peter Ken (2025) A mathematical justification to apply the secular approximation to the Redfield equation. [sonstige Veröffentlichung] (eingereichter Beitrag)
|
PDF
1MB |
Kurzfassung
Quantum master equations are widely used to describe the dynamics of open quantum systems. All these different master equations rely on specific approximations that may or may not be justified. Starting from a microscopic model, applying the standard Born and Markov approximations results in the Redfield equation that does not guarantee to preserve positivity. The latter is typically achieved by additionally applying the secular approximation resulting in a quantum master equation in Lindblad form. There are other ways to obtain an equation in Lindblad form, one of which is the recently proposed Universal Lindblad Equation. It has been shown that it is in the same equivalence class of approximations as the Redfield master equation although avoiding the heuristic secular approximation [arXiv:2004.01469]. In this work, we prove that the solutions of the master equation obtained by applying the secular approximation are also obtained by an approximation of the same order as the one performed to obtain the Redfield equation. We hereby provide a mathematical justification for the secular approximation. We show that the result of applying the secular approximation is obtained naturally by applying a self-consistency argument. This shows that the resulting master equation is also in the same equivalence class of approximations as the Redfield master equation and the Universal Lindblad Equation. We furthermore compare it to the Universal Lindblad Equation numerically and show numerical evidence that the master equation obtained through the secular approximation yields more accurate solutions.
| elib-URL des Eintrags: | https://elib.dlr.de/220525/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | sonstige Veröffentlichung | ||||||||||||||||||||||||
| Titel: | A mathematical justification to apply the secular approximation to the Redfield equation | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 27 November 2025 | ||||||||||||||||||||||||
| Referierte Publikation: | Nein | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| DOI: | 10.48550/arXiv.2505.06786 | ||||||||||||||||||||||||
| Status: | eingereichter Beitrag | ||||||||||||||||||||||||
| Stichwörter: | Quantum Physics, Open Quantum Systems | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | QC SW - Software | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | QC - ALQU | ||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Softwaretechnologie | ||||||||||||||||||||||||
| Hinterlegt von: | Schuhmacher, Peter Ken | ||||||||||||||||||||||||
| Hinterlegt am: | 08 Dez 2025 09:30 | ||||||||||||||||||||||||
| Letzte Änderung: | 08 Dez 2025 09:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags