elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

How important are data augmentations to close the domain gap for object detection in orbit?

Ulmer, Maximilian und Klüpfel, Leonard und Durner, Maximilian und Triebel, Rudolph (2025) How important are data augmentations to close the domain gap for object detection in orbit? In: 2025 IEEE Aerospace Conference, AERO 2025, Seiten 1-12. IEEE. 2025 IEEE Aerospace Conference, 2025-03-01, Big Sky, MT, USA. doi: 10.1109/AERO63441.2025.11068779. ISBN 979-8-3503-5597-0. ISSN 2996-2358.

[img] PDF - Nur DLR-intern zugänglich
22MB
[img] PDF
13MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/11068779

Kurzfassung

We investigate the efficacy of data augmentations to close the domain gap in spaceborne computer vision, crucial for autonomous operations like on-orbit servicing. As the use of computer vision in space increases, challenges such as hostile illumination and low signal-to-noise ratios significantly hinder performance. While learning-based algorithms show promising results, their adoption is limited by the need for extensive annotated training data and the domain gap that arises from differences between synthesized and real-world imagery. This study explores domain generalization in terms of data augmentations - classical color and geometric transformations, corruptions, and noise - to enhance model performance across the domain gap. To this end, we conduct an large scale experiment using a hyperparameter optimization pipeline that samples hundreds of different configurations and searches for the best set to bridge the domain gap. As a reference task, we use 2D object detection and evaluate on the SPEED+ dataset that contains real hardware-in-the-loop satellite images in its test set. Moreover, we evaluate four popular object detectors, including Mask R-CNN, Faster R-CNN, YOLO-v7, and the open set detector GroundingDINO, and highlight their trade-offs between performance, inference speed, and training time. Our results underscore the vital role of data augmentations in bridging the domain gap, improving model performance, robustness, and reliability for critical space applications. As a result, we propose two novel data augmentations specifically developed to emulate the visual effects observed in orbital imagery. We conclude by recommending the most effective augmentations for advancing computer vision in challenging orbital environments.

elib-URL des Eintrags:https://elib.dlr.de/220493/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:How important are data augmentations to close the domain gap for object detection in orbit?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ulmer, Maximilianmaximilian.ulmer (at) dlr.dehttps://orcid.org/0009-0008-3807-639X198826444
Klüpfel, Leonardleonard.kluepfel (at) dlr.dehttps://orcid.org/0009-0002-9056-5912198826446
Durner, MaximilianMaximilian.Durner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Triebel, Rudolphrudolph.triebel (at) in.tum.dehttps://orcid.org/0000-0002-7975-036XNICHT SPEZIFIZIERT
Datum:14 Juli 2025
Erschienen in:2025 IEEE Aerospace Conference, AERO 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/AERO63441.2025.11068779
Seitenbereich:Seiten 1-12
Verlag:IEEE
ISSN:2996-2358
ISBN:979-8-3503-5597-0
Status:veröffentlicht
Stichwörter:Computer Vision, Detection, Domain Gap
Veranstaltungstitel:2025 IEEE Aerospace Conference
Veranstaltungsort:Big Sky, MT, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:1 März 2025
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Multisensorielle Weltmodellierung (RM) [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Ulmer, Maximilian
Hinterlegt am:05 Dez 2025 13:50
Letzte Änderung:05 Dez 2025 13:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.