Ulmer, Maximilian und Boerdijk, Wout und Triebel, Rudolph und Durner, Maximilian (2025) Conditional Latent Diffusion Models for Zero-Shot Instance Segmentation. In: 20th IEEE/CVF International Conference on Computer Vision, ICCV 2025, Seiten 24360-24369. IEEE. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2025-10-18, Honululu, Hawaii. ISSN 1550-5499.
Dies ist die aktuellste Version dieses Eintrags.
|
PDF
4MB |
Kurzfassung
This paper presents OC-DiT, a novel class of diffusion models designed for object-centric prediction, and applies it to zero-shot instance segmentation. We propose a conditional latent diffusion framework that generates instance masks by conditioning the generative process on object templates and image features within the diffusion model's latent space. This allows our model to effectively disentangle object instances through the diffusion process, which is guided by visual object descriptors and localized image cues. Specifically, we introduce two model variants: a coarse model for generating initial object instance proposals, and a refinement model that refines all proposals in parallel. We train these models on a newly created, large-scale synthetic dataset comprising thousands of high-quality object meshes. Remarkably, our model achieves state-of-the-art performance on multiple challenging real-world benchmarks, without requiring any retraining on target data. Through comprehensive ablation studies, we demonstrate the potential of diffusion models for instance segmentation tasks. Code and the synthetic dataset will be publicly released.
| elib-URL des Eintrags: | https://elib.dlr.de/220487/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Conditional Latent Diffusion Models for Zero-Shot Instance Segmentation | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Oktober 2025 | ||||||||||||||||||||
| Erschienen in: | 20th IEEE/CVF International Conference on Computer Vision, ICCV 2025 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Seitenbereich: | Seiten 24360-24369 | ||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||
| ISSN: | 1550-5499 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Computer Vision, Segmentation, Diffusion | ||||||||||||||||||||
| Veranstaltungstitel: | Proceedings of the IEEE/CVF International Conference on Computer Vision | ||||||||||||||||||||
| Veranstaltungsort: | Honululu, Hawaii | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsdatum: | 18 Oktober 2025 | ||||||||||||||||||||
| Veranstalter : | IEEE/CVF | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
| Hinterlegt von: | Ulmer, Maximilian | ||||||||||||||||||||
| Hinterlegt am: | 05 Dez 2025 13:41 | ||||||||||||||||||||
| Letzte Änderung: | 05 Dez 2025 13:41 |
Verfügbare Versionen dieses Eintrags
- Conditional Latent Diffusion Models for Zero-Shot Instance Segmentation. (deposited 05 Dez 2025 13:41) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags