Willibald, Christoph und Sliwowski, Daniel und Lee, Dongheui (2025) Multimodal Anomaly Detection with a Mixture-of-Experts. In: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2025, Seiten 20020-20027. 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025-10-19 - 2025-10-25, Hangzhou, China. doi: 10.1109/IROS60139.2025.11245878. ISSN 2153-0858.
|
PDF
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11245878
Kurzfassung
With a growing number of robots being deployed across diverse applications, robust multimodal anomaly detection becomes increasingly important. In robotic manipulation, failures typically arise from (1) robot-driven anomalies due to an insufficient task model or hardware limitations, and (2) environment-driven anomalies caused by dynamic environmental changes or external interferences. Conventional anomaly detection methods focus either on the first by low-level statistical modeling of proprioceptive signals or the second by deep learning-based visual environment observation, each with different computational and training data requirements. To effectively capture anomalies from both sources, we propose a mixture-of-experts framework that integrates the complementary detection mechanisms with a visual-language model for environment monitoring and a Gaussian-mixture regression-based detector for tracking deviations in interaction forces and robot motions. We introduce a confidence-based fusion mechanism that dynamically selects the most reliable detector for each situation. We evaluate our approach on both household and industrial tasks using two robotic systems, demonstrating a 60% reduction in detection delay while improving frame-wise anomaly detection performance compared to individual detectors.
| elib-URL des Eintrags: | https://elib.dlr.de/220444/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
| Titel: | Multimodal Anomaly Detection with a Mixture-of-Experts | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 27 November 2025 | ||||||||||||||||
| Erschienen in: | 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2025 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/IROS60139.2025.11245878 | ||||||||||||||||
| Seitenbereich: | Seiten 20020-20027 | ||||||||||||||||
| ISSN: | 2153-0858 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Anomaly Detection, Robot Learning, Mixture of Experts | ||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | ||||||||||||||||
| Veranstaltungsort: | Hangzhou, China | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 19 Oktober 2025 | ||||||||||||||||
| Veranstaltungsende: | 25 Oktober 2025 | ||||||||||||||||
| Veranstalter : | IEEE/RSJ | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Synergieprojekt Factory of the Future [RO] | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
| Hinterlegt von: | Willibald, Christoph | ||||||||||||||||
| Hinterlegt am: | 04 Dez 2025 20:26 | ||||||||||||||||
| Letzte Änderung: | 04 Dez 2025 20:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags