elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Vision-based Self-Localization for UAVs using Semantic Features and OpenStreetMap

Schmidt, Rebecca und Rüter, Joachim und Krause, Stefan und Schubert, Stefan (2025) Vision-based Self-Localization for UAVs using Semantic Features and OpenStreetMap. In: 2025 IEEE Aerospace Conference, AERO 2025. 2025 IEEE Aerospace Conference, 2025-03-01 - 2025-03-08, Big Sky, Montana, USA. doi: 10.1109/AERO63441.2025.11068572. ISBN 979-8-3503-5597-0. ISSN 2996-2358.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

The autonomous operation of an unmanned aerial vehicle (UAV) relies on reliable self-localization, which is typically achieved using global navigation satellite systems (GNSS). However, GNSS data can be unreliable due to effects of space weather phenomena or interference from GNSS jamming. To ensure accurate localization in such conditions, vision-based approaches for UAV positioning offer a potential alternative, though they often come with trade-offs in positioning accuracy or computational efficiency. In this paper, we present a real-time method for vision-based UAV self-localization that achieves GNSS-like accuracy. This approach involves extracting high-level semantic features from captured images and matching them to geo-referenced OpenStreetMap (OSM) data of the flight area. The global location of the UAV is then determined based on the matching results. We also compare and evaluate different metrics for measuring scene similarity to enhance the system's performance. Moreover, we demonstrate that even when OSM data is partially inaccurate, it can still be used to achieve accurate localization. This holds true even with a non-optimal neural network for segmentation and in environments with limited semantic features. The dataset used for evaluation will be made available with publication of this paper.

elib-URL des Eintrags:https://elib.dlr.de/220422/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Vision-based Self-Localization for UAVs using Semantic Features and OpenStreetMap
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schmidt, Rebeccarebecca.schmidt (at) dlr.dehttps://orcid.org/0000-0002-9249-3812203541199
Rüter, Joachimjoachim.rueter (at) dlr.dehttps://orcid.org/0000-0002-5559-5481203541201
Krause, StefanStefan.Krause (at) dlr.dehttps://orcid.org/0000-0001-6969-0036203541202
Schubert, Stefanstefan.schubert (at) etit.tu-chemnitz.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:2025 IEEE Aerospace Conference, AERO 2025
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/AERO63441.2025.11068572
ISSN:2996-2358
ISBN:979-8-3503-5597-0
Status:veröffentlicht
Stichwörter:Vision-based Localization, Camera, Semantic Segmentation, GNSS-denied, UAV, Maps, Open-Street-Map
Veranstaltungstitel:2025 IEEE Aerospace Conference
Veranstaltungsort:Big Sky, Montana, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 März 2025
Veranstaltungsende:8 März 2025
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D IAS - Innovative autonome Systeme
DLR - Teilgebiet (Projekt, Vorhaben):D - SKIAS
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge
Institut für Flugsystemtechnik
Hinterlegt von: Schmidt, Rebecca
Hinterlegt am:25 Jan 2026 20:57
Letzte Änderung:25 Jan 2026 20:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.