Schmidt, Rebecca und Rüter, Joachim und Krause, Stefan und Schubert, Stefan (2025) Vision-based Self-Localization for UAVs using Semantic Features and OpenStreetMap. In: 2025 IEEE Aerospace Conference, AERO 2025. 2025 IEEE Aerospace Conference, 2025-03-01 - 2025-03-08, Big Sky, Montana, USA. doi: 10.1109/AERO63441.2025.11068572. ISBN 979-8-3503-5597-0. ISSN 2996-2358.
|
PDF
- Nur DLR-intern zugänglich
4MB |
Kurzfassung
The autonomous operation of an unmanned aerial vehicle (UAV) relies on reliable self-localization, which is typically achieved using global navigation satellite systems (GNSS). However, GNSS data can be unreliable due to effects of space weather phenomena or interference from GNSS jamming. To ensure accurate localization in such conditions, vision-based approaches for UAV positioning offer a potential alternative, though they often come with trade-offs in positioning accuracy or computational efficiency. In this paper, we present a real-time method for vision-based UAV self-localization that achieves GNSS-like accuracy. This approach involves extracting high-level semantic features from captured images and matching them to geo-referenced OpenStreetMap (OSM) data of the flight area. The global location of the UAV is then determined based on the matching results. We also compare and evaluate different metrics for measuring scene similarity to enhance the system's performance. Moreover, we demonstrate that even when OSM data is partially inaccurate, it can still be used to achieve accurate localization. This holds true even with a non-optimal neural network for segmentation and in environments with limited semantic features. The dataset used for evaluation will be made available with publication of this paper.
| elib-URL des Eintrags: | https://elib.dlr.de/220422/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Vision-based Self-Localization for UAVs using Semantic Features and OpenStreetMap | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2025 | ||||||||||||||||||||
| Erschienen in: | 2025 IEEE Aerospace Conference, AERO 2025 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| DOI: | 10.1109/AERO63441.2025.11068572 | ||||||||||||||||||||
| ISSN: | 2996-2358 | ||||||||||||||||||||
| ISBN: | 979-8-3503-5597-0 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Vision-based Localization, Camera, Semantic Segmentation, GNSS-denied, UAV, Maps, Open-Street-Map | ||||||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE Aerospace Conference | ||||||||||||||||||||
| Veranstaltungsort: | Big Sky, Montana, USA | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 1 März 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 8 März 2025 | ||||||||||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||
| DLR - Forschungsgebiet: | D IAS - Innovative autonome Systeme | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - SKIAS | ||||||||||||||||||||
| Standort: | Braunschweig | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Flugsystemtechnik > Unbemannte Luftfahrzeuge Institut für Flugsystemtechnik | ||||||||||||||||||||
| Hinterlegt von: | Schmidt, Rebecca | ||||||||||||||||||||
| Hinterlegt am: | 25 Jan 2026 20:57 | ||||||||||||||||||||
| Letzte Änderung: | 25 Jan 2026 20:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags