elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Subsurface Exploration of the Great Aletsch Glacier Using SAR Tomography

Schlenk, Patricia und Pardini, Matteo und Fischer, Georg und Hajnsek, Irena (2025) Subsurface Exploration of the Great Aletsch Glacier Using SAR Tomography. In: International Geoscience and Remote Sensing Symposium (IGARSS). International Geoscience and Remote Sensing Symposium (IGARSS), 2025-08-03 - 2025-08-08, Brisbane, Australia. (nicht veröffentlicht)

[img] PDF - Nur DLR-intern zugänglich
78kB

Kurzfassung

Synthetic Aperture Radar (SAR) and microwave technologies are powerful tools for investigating glacier internal structures due to their ability to penetrate snow, firn, and ice and their sensitivity to dielectric changes. These capabilities make them invaluable for improving glacier monitoring and refining mass balance models. This study investigates the subsurface characteristics of the accumulation zone of the Great Aletsch Glacier in Switzerland, where annual snowfall surpasses melt, leading to the gradual transformation of snow into firn and eventually into ice. The research uses multi-frequency, fully polarimetric SAR data from the SWESAR24 airborne campaign, acquired with the F-SAR sensor from the German Aerospace Center (DLR) in March 2024, focusing on a relatively flat, minimally crevassed study area. Complementary ground-based measurements, including ground-penetrating radar (GPR) surveys and in situ snow depth and density measurements, were conducted to enable a comprehensive comparison of subsurface layers detected by these techniques. The primary method used to investigate the glacier's internal structure is SAR tomography, which utilizes multiple SAR images captured at different incidence angles to generate three-dimensional representations of the subsurface. Multi-frequency SAR tomography, including X-, C- and L-band, allows us to capture both shallower and deeper subsurface features. In this study, the focus is on data acquired at L-band, which penetrates up to approximately 50 meters below the surface with a vertical resolution of 2.9 meters. Preliminary results of the tomographic analysis reveal distinct subsurface layers, with the upper layers possibly corresponding to the summer layers from previous years. These layers are formed by residual snow that undergoes melt-freeze processes, creating a hard, icy crust before the onset of new snowfall. However, interpreting deeper layers proves challenging, particularly when differentiating firn from ice and identifying the bedrock in the lower subsurface. This differentiation is crucial, as accurately identifying the transition from firn to ice and to bedrock is essential for understanding glacier dynamics and the internal structure. To address these challenges, we incorporate our complementary data, where GPR provides higher vertical resolution compared to SAR tomography and reveals numerous distinct layers within the subsurface. As part of this study, we perform a qualitative comparison between the layers visible in the tomographic representation and the GPR data. To improve the accuracy of this comparison, a 3D geocoding approach is applied to align the datasets to the same surface height and simulating a nadirlooking perspective for the tomographic analysis. Moreover, in-situ measurements provide density profiles of the upper layers, which directly influence the dielectric properties of snow, firn, and ice. Higher densities result in increased permittivity due to reduced air content and greater material compactness, with firn typically ranging from 400 to 830 kg/m³ and transitioning to ice above this range. Microwaves, being sensitive to dielectric changes, can detect density variations, and therefore enabling the distinction between firn, ice, and bedrock. Therefore, this study also aims to link GPR detected layers with those identified through SAR tomography and correlating them with dielectric properties and physical characteristics. These insights would improve the interpretation of glaciers through SAR tomography, advancing both cryospheric research and methods for monitoring glacier dynamics under frozen conditions.

elib-URL des Eintrags:https://elib.dlr.de/220399/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Subsurface Exploration of the Great Aletsch Glacier Using SAR Tomography
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schlenk, Patriciapatricia.schlenk (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pardini, MatteoMatteo.Pardini (at) dlr.dehttps://orcid.org/0000-0003-2018-7514NICHT SPEZIFIZIERT
Fischer, GeorgGeorg.Fischer (at) dlr.dehttps://orcid.org/0000-0002-7987-5453NICHT SPEZIFIZIERT
Hajnsek, IrenaIrena.Hajnsek (at) dlr.dehttps://orcid.org/0000-0002-0926-3283NICHT SPEZIFIZIERT
Datum:August 2025
Erschienen in:International Geoscience and Remote Sensing Symposium (IGARSS)
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Status:nicht veröffentlicht
Stichwörter:Alpine glacier, SAR tomography
Veranstaltungstitel:International Geoscience and Remote Sensing Symposium (IGARSS)
Veranstaltungsort:Brisbane, Australia
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:3 August 2025
Veranstaltungsende:8 August 2025
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Polarimetrische SAR-Interferometrie HR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte
Hinterlegt von: Schlenk, Patricia
Hinterlegt am:04 Dez 2025 16:37
Letzte Änderung:04 Dez 2025 16:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.